ﻻ يوجد ملخص باللغة العربية
Detection of Dirac, Majorana and Weyl fermions in real materials may significantly strengthen the bridge between high-energy and condensed-matter physics. While the presence of Dirac fermions is well established in graphene and topological insulators, Majorana particles have been reported recently and evidence for Weyl fermions in non-centrosymmetric crystals has been found only a couple of months ago, the magnetic Weyl fermions are still elusive despite numerous theoretical predictions and intense experimental search. In order to detect a time-reversal symmetry breaking Weyl state we designed two materials with Fermi velocities superior to that of graphene and present here the experimental evidence of the realization of such a state in one of them, YbMnBi2. We model the time reversal symmetry breaking observed by magnetization measurements by a canted antiferromagnetic state and find a number of Weyl points both above and below the Fermi level. Using angle-resolved photoemission, we directly observe these latter Weyl points and a hallmark of the exotic state - the arc of the surface states which connects these points. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.
Weyl semimetals host linear energy dispersions around Weyl nodes, as well as monopoles of Berry curvature in momentum space around these points. These features give rise to unique transport signatures in a Weyl semimetal, such as transverse transport
Time-reversal (T) symmetry breaking is a fundamental physics concept underpinning a broad science and technology area, including topological magnets, axion physics, dissipationless Hall currents, or spintronic memories. A best known conventional mode
Quantum topological materials, exemplified by topological insulators, three-dimensional Dirac semimetals and Weyl semimetals, have attracted much attention recently because of their unique electronic structure and physical properties. Very lately it
We study the energy spectra and wavefunctions of graphene rings formed from metallic armchair ribbons, near zero energy, to search for properties which may be identified with effective broken time reversal symmetry (EBTRS). Appropriately chosen corne
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b