ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a wandering radio jet base after a large X-ray flare in the blazar Markarian 421

109   0   0.0 ( 0 )
 نشر من قبل Kotaro Niinuma Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the location of the radio jet bases (radio cores) of blazars in radio images, and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducted 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time, we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of $10^5$ Schwarzschild radii (Rs) at the distance of Markarian~421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.

قيم البحث

اقرأ أيضاً

In September 2012, the high-synchrotron-peaked (HSP) blazar Markarian 421 underwent a rapid wideband radio flare, reaching nearly twice the brightest level observed in the centimeter band in over three decades of monitoring. In response to this event we carried out a five epoch centimeter- to millimeter-band multifrequency Very Long Baseline Array (VLBA) campaign to investigate the aftermath of this emission event. Rapid radio variations are unprecedented in this object and are surprising in an HSP BL Lac object. In this flare, the 15 GHz flux density increased with an exponential doubling time of about 9 days, then faded to its prior level at a similar rate. This is comparable with the fastest large-amplitude centimeter-band radio variability observed in any blazar. Similar flux density increases were detected up to millimeter bands. This radio flare followed about two months after a similarly unprecedented GeV gamma-ray flare (reaching a daily E>100 MeV flux of (1.2 +/- 0.7)x10^(-6) ph cm^(-2) s^(-1)) reported by the Fermi Large Area Telescope (LAT) collaboration, with a simultaneous tentative TeV detection by ARGO-YBJ. A cross-correlation analysis of long-term 15 GHz and LAT gamma-ray light curves finds a statistically significant correlation with the radio lagging ~40 days behind, suggesting that the gamma-ray emission originates upstream of the radio emission. Preliminary results from our VLBA observations show brightening in the unresolved core region and no evidence for apparent superluminal motions or substantial flux variations downstream.
93 - K. Niinuma , M. Kino , H. Nagai 2012
We report on the VLBI follow-up observations using the Japanese VLBI Network (JVN) array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in mid-February, 2010. The total of five epochs of observations were performed at inter vals of about 20 days between March 7 and May 31, 2010. No new-born component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at ~1 mas north-west from the core was able to be identified, and its proper motion can be measured as -1.66+/-0.46 mas yr^-1, which corresponds to an apparent velocity of -3.48+/-0.97 c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10 to 20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.
Markarian 421 (Mrk 421) is a high-synchrotron-peaked blazar showing relentless variability across the electromagnetic spectrum from radio to gamma-rays. We use over 7-years of radio and GeV observations to study the correlation and connected variabil ity in radio and GeV bands. Radio data was obtained in a 15GHz band by the OVRO 40-m radio telescope, and GeV data is from Fermi Large Area Telescope. To determine the location of the gamma-ray emission regions in Mrk 421 we correlate GeV and radio light curves. We found that GeV light curve varies independently and accurately leads the variations observed in radio. Using a fast-rise-slow-decay profile derived for shock propagation within a conical jet, we manage to reproduce the radio light curve from GeV variations. The profile rise time is comparable with the Fermi-LAT binning the decay time is about 7.6 days. The best-fit value for the response profile also features a 44 days delay between the GeV and radio, which is compatible with the wide lag range obtained from the correlation. Such a delay corresponds to $10^{17}$ cm/c, which is comparable with the apparent light crossing time of the Mrk 421 radio core. Generally, the observed variability matches the predictions of the leptonic models and suggests that the physical conditions vary in the jet. The emitting region moving downstream the jet, while the environment becomes first transparent to gamma rays and later to the radio.
Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ~150 days, from ~135 mJy to ~270 mJy. It is demonstrated that the elapsed rise time in the quasar rest frame and the relative magnitude of the flare is typical of some of the stronger flares in blazars that are associated with the ejection of discrete components on parsec scales. The decay of a similar flare was found in a previous monitoring campaign at 22 GHz. We conclude that these flares are not rare and indicate the likely ejection of a new radio component that can be resolved from the core with Very Long Baseline Interferometry. The implication is that Mrk 231 seems to be a quasar in which the physical mechanism that produces the BAL wind is in tension with the emergence of a fledgling blazar.
We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 01-02 April 2017. Within a time-scale of few hours, the source shows a transition from the hypersoft state (HPS) to a more lum inous state (we termed as the very high state) which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the SXT and LAXPC spectra jointly in 0.5-70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat powerlaw component suddenly appeared in the spectra which extends to very high energies with the powerlaw photon index of 1.49 +/- 0.04. Such a flat powerlaw component has never been reported from Cyg X-3. Interestingly the fitted powerlaw model in 25-70 keV, when extrapolated to the radio frequency, predicts the radio flux density consistent with the trend measured from RATAN-600 telescope at 11.2 GHz. This provides a direct evidence of the synchrotron origin of flat X-ray powerlaw component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 +/- 0.08 when 11.2 GHz radio flux density increases from ~100 to ~478 mJy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا