ترغب بنشر مسار تعليمي؟ اضغط هنا

An Exceptional Radio Flare in Markarian 421

379   0   0.0 ( 0 )
 نشر من قبل Joseph Richards
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In September 2012, the high-synchrotron-peaked (HSP) blazar Markarian 421 underwent a rapid wideband radio flare, reaching nearly twice the brightest level observed in the centimeter band in over three decades of monitoring. In response to this event we carried out a five epoch centimeter- to millimeter-band multifrequency Very Long Baseline Array (VLBA) campaign to investigate the aftermath of this emission event. Rapid radio variations are unprecedented in this object and are surprising in an HSP BL Lac object. In this flare, the 15 GHz flux density increased with an exponential doubling time of about 9 days, then faded to its prior level at a similar rate. This is comparable with the fastest large-amplitude centimeter-band radio variability observed in any blazar. Similar flux density increases were detected up to millimeter bands. This radio flare followed about two months after a similarly unprecedented GeV gamma-ray flare (reaching a daily E>100 MeV flux of (1.2 +/- 0.7)x10^(-6) ph cm^(-2) s^(-1)) reported by the Fermi Large Area Telescope (LAT) collaboration, with a simultaneous tentative TeV detection by ARGO-YBJ. A cross-correlation analysis of long-term 15 GHz and LAT gamma-ray light curves finds a statistically significant correlation with the radio lagging ~40 days behind, suggesting that the gamma-ray emission originates upstream of the radio emission. Preliminary results from our VLBA observations show brightening in the unresolved core region and no evidence for apparent superluminal motions or substantial flux variations downstream.



قيم البحث

اقرأ أيضاً

Markarian 421 (Mrk 421) is a high-synchrotron-peaked blazar showing relentless variability across the electromagnetic spectrum from radio to gamma-rays. We use over 7-years of radio and GeV observations to study the correlation and connected variabil ity in radio and GeV bands. Radio data was obtained in a 15GHz band by the OVRO 40-m radio telescope, and GeV data is from Fermi Large Area Telescope. To determine the location of the gamma-ray emission regions in Mrk 421 we correlate GeV and radio light curves. We found that GeV light curve varies independently and accurately leads the variations observed in radio. Using a fast-rise-slow-decay profile derived for shock propagation within a conical jet, we manage to reproduce the radio light curve from GeV variations. The profile rise time is comparable with the Fermi-LAT binning the decay time is about 7.6 days. The best-fit value for the response profile also features a 44 days delay between the GeV and radio, which is compatible with the wide lag range obtained from the correlation. Such a delay corresponds to $10^{17}$ cm/c, which is comparable with the apparent light crossing time of the Mrk 421 radio core. Generally, the observed variability matches the predictions of the leptonic models and suggests that the physical conditions vary in the jet. The emitting region moving downstream the jet, while the environment becomes first transparent to gamma rays and later to the radio.
133 - K. Niinuma , M. Kino , H. Nagai 2012
We report on the VLBI follow-up observations using the Japanese VLBI Network (JVN) array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in mid-February, 2010. The total of five epochs of observations were performed at inter vals of about 20 days between March 7 and May 31, 2010. No new-born component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at ~1 mas north-west from the core was able to be identified, and its proper motion can be measured as -1.66+/-0.46 mas yr^-1, which corresponds to an apparent velocity of -3.48+/-0.97 c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10 to 20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.
183 - K. Niinuma , M. Kino , A. Doi 2015
We investigate the location of the radio jet bases (radio cores) of blazars in radio images, and their stationarity by means of dense very long baseline interferometry (VLBI) observations. In order to measure the position of a radio core, we conducte d 12 epoch astrometric observation of the blazar Markarian 421 with the VLBI Exploration of Radio Astrometry at 22 GHz immediately after a large X-ray flare, which occurred in the middle of 2011 September. For the first time, we find that the radio core is not stationary but rather changes its location toward 0.5 mas downstream. This angular scale corresponds to the de-projected length of a scale of $10^5$ Schwarzschild radii (Rs) at the distance of Markarian~421. This radio-core wandering may be a new type of manifestation associated with the phenomena of large X-ray flares.
501 - E. Pian 2013
Multiwavelength variability of blazars offers indirect insight into their powerful engines and on the mechanisms through which energy is propagated from the centre down the jet. The BL Lac object Mkn 421 is a TeV emitter, a bright blazar at all wavel engths, and therefore an excellent target for variability studies. Mkn 421 was observed by INTEGRAL and Fermi-LAT in an active state on 16-21 April 2013. Well sampled optical, soft, and hard X-ray light curves show the presence of two flares. The average flux in the 20-100 keV range is 9.1e-11 erg/s/cm2 (~4.5 mCrab) and the nuclear average apparent magnitude, corrected for Galactic extinction, is V ~12.2. In the time-resolved X-ray spectra (3.5-60 keV), which are described by broken power laws and, marginally better, by log-parabolic laws, we see a hardening that correlates with flux increase, as expected in refreshed energy injections in a population of electrons that later cool via synchrotron radiation. The hardness ratios between the JEM-X fluxes in two different bands and between the JEM-X and IBIS/ISGRI fluxes confirm this trend. During the observation, the variability level increases monotonically from the optical to the hard X-rays, while the large LAT errors do not allow a significant assessment of the MeV-GeV variability. The cross-correlation analysis during the onset of the most prominent flare suggests a monotonically increasing delay of the lower frequency emission with respect to that at higher frequency, with a maximum time-lag of about 70 minutes, that is however not well constrained. The spectral energy distributions from the optical to the TeV domain are satisfactorily described by homogeneous models of blazar emission based on synchrotron radiation and synchrotron self-Compton scattering, except in the state corresponding to the LAT softest spectrum and highest flux.
We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of February, 2010 when an extraordinary flare reaching a level of $sim$27~Crab Units above 1~TeV was measured in very-high-ener gy (VHE) $gamma$-rays with the VERITAS observatory. This is the highest flux state for Mrk 421 ever observed in VHE $gamma$-rays. Data are analyzed from a coordinated campaign across multiple instruments including VHE $gamma$-ray (VERITAS, MAGIC), high-energy (HE) $gamma$-ray (Fermi-LAT), X-ray (Swift}, RXTE, MAXI), optical (including the GASP-WEBT collaboration and polarization data) and radio (Metsahovi, OVRO, UMRAO). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare `decline epochs. The main flare statistics allow 2-minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of $sim$25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor ($delta gtrsim 33$) and the size of the emission region ($ delta^{-1}R_B lesssim 3.8times 10^{13},,mbox{cm}$) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10-minute-binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship: from linear to quadratic to lack of correlation to anti-correlation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain by the classic single-zone synchrotron self-Compton model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا