ﻻ يوجد ملخص باللغة العربية
This paper describes Picats planner, its implementation, and planning models for several domains used in International Planning Competition (IPC) 2014. Picats planner is implemented by use of tabling. During search, every state encountered is tabled, and tabled states are used to effectively perform resource-bounded search. In Picat, structured data can be used to avoid enumerating all possible permutations of objects, and term sharing is used to avoid duplication of common state data. This paper presents several modeling techniques through the example models, ranging from designing state representations to facilitate data sharing and symmetry breaking, encoding actions with operations for efficient precondition checking and state updating, to incorporating domain knowledge and heuristics. Broadly, this paper demonstrates the effectiveness of tabled logic programming for planning, and argues the importance of modeling despite recent significant progress in domain-independent PDDL planners.
Tabling has been used for some time to improve efficiency of Prolog programs by memorizing answered queries. The same idea can be naturally used to memorize visited states during search for planning. In this paper we present a planner developed in th
PDDL+ is an extension of PDDL that enables modelling planning domains with mixed discrete-continuous dynamics. In this paper we present a new approach to PDDL+ planning based on Constraint Answer Set Programming (CASP), i.e. ASP rules plus numerical
Planning as satisfiability is a principal approach to planning with many eminent advantages. The existing planning as satisfiability techniques usually use encodings compiled from STRIPS. We introduce a novel SAT encoding scheme (SASE) based on the S
We present a general approach to planning with incomplete information in Answer Set Programming (ASP). More precisely, we consider the problems of conformant and conditional planning with sensing actions and assumptions. We represent planning problem
We investigate the use of Answer Set Programming to solve variations of gossip problems, by modeling them as epistemic planning problems.