ﻻ يوجد ملخص باللغة العربية
Let G be a connected reductive group over an algebraic closure of a finite field Fq. In this paper it is proved that the infinite dimensional Steinberg module of kG defined by N. Xi in 2014 is irreducible when k is a field of positive characteristic and char k is not char Fq. For certain special linear groups, we show that the Steinberg modules of the groups are not quasi-finite with respect to some natural quasi-finite sequences of the groups.
We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the
We provide a micro-local necessary condition for distinction of admissible representations of real reductive groups in the context of spherical pairs. Let $bf G$ be a complex algebraic reductive group, and $bf Hsubset G$ be a spherical algebraic su
Let $F$ be either $mathbb{R}$ or a finite extension of $mathbb{Q}_p$, and let $G$ be a finite central extension of the group of $F$-points of a reductive group defined over $F$. Also let $pi$ be a smooth representation of $G$ (Frechet of moderate gro
We introduce a notion of measure contracting actions and show that Koopman representations corresponding to ergodic measure contracting actions are irreducible. As a corollary we obtain that Koopman representations associated to canonical actions of
We introduce graded Hecke algebras H based on a (possibly disconnected) complex reductive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup M of G. These generalize the graded Hecke algebras defined and investigated by Lus