ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducibility of Infinite Dimensional Steinberg Modules of Reductive Groups with Frobenius Maps

232   0   0.0 ( 0 )
 نشر من قبل Ruotao Yang
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Ruotao Yang




اسأل ChatGPT حول البحث

Let G be a connected reductive group over an algebraic closure of a finite field Fq. In this paper it is proved that the infinite dimensional Steinberg module of kG defined by N. Xi in 2014 is irreducible when k is a field of positive characteristic and char k is not char Fq. For certain special linear groups, we show that the Steinberg modules of the groups are not quasi-finite with respect to some natural quasi-finite sequences of the groups.



قيم البحث

اقرأ أيضاً

We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the split reductive case and the pseudo-split pseudo-reductive commutative case. Moreover, we give the first results on the latter, including a rather complete description of the rank one case.
We provide a micro-local necessary condition for distinction of admissible representations of real reductive groups in the context of spherical pairs. Let $bf G$ be a complex algebraic reductive group, and $bf Hsubset G$ be a spherical algebraic su bgroup. Let $mathfrak{g},mathfrak{h}$ denote the Lie algebras of $bf G$ and $bf H$, and let $mathfrak{h}^{bot}$ denote the annihilator of $mathfrak{h}$ in $mathfrak{g}^*$. A $mathfrak{g}$-module is called $mathfrak{h}$-distinguished if it admits a non-zero $mathfrak{h}$-invariant functional. We show that the maximal $bf G$-orbit in the annihilator variety of any irreducible $mathfrak{h}$-distinguished $mathfrak{g}$-module intersects $mathfrak{h}^{bot}$. This generalizes a result of Vogan. We apply this to Casselman-Wallach representations of real reductive groups to obtain information on branching problems, translation functors and Jacquet modules. Further, we prove in many cases that as suggested by Prasad, if $H$ is a symmetric subgroup of a real reductive group $G$, the existence of a tempered $H$-distinguished representation of $G$ implies the existence of a generic $H$-distinguished representation of $G$. Many models studied in the theory of automorphic forms involve an additive character on the unipotent radical of $bf H$, and we devised a twisted version of our theorem that yields necessary conditions for the existence of those mixed models. Our method of proof here is inspired by the theory of W-algebras. As an application we derive necessary conditions for the existence of Rankin-Selberg, Bessel, Klyachko and Shalika models. Our results are compatible with the recent Gan-Gross-Prasad conjectures for non-generic representations. We also prove more general results that ease the sphericity assumption on the subgroup, and apply them to local theta correspondence in type II and to degenerate Whittaker models.
Let $F$ be either $mathbb{R}$ or a finite extension of $mathbb{Q}_p$, and let $G$ be a finite central extension of the group of $F$-points of a reductive group defined over $F$. Also let $pi$ be a smooth representation of $G$ (Frechet of moderate gro wth if $F=mathbb{R}$). For each nilpotent orbit $mathcal{O}$ we consider a certain Whittaker quotient $pi_{mathcal{O}}$ of $pi$. We define the Whittaker support WS$(pi)$ to be the set of maximal $mathcal{O}$ among those for which $pi_{mathcal{O}} eq 0$. In this paper we prove that all $mathcal{O}inmathrm{WS}(pi)$ are quasi-admissible nilpotent orbits, generalizing some of the results in [Moe96,JLS16]. If $F$ is $p$-adic and $pi$ is quasi-cuspidal then we show that all $mathcal{O}inmathrm{WS}(pi)$ are $F$-distinguished, i.e. do not intersect the Lie algebra of any proper Levi subgroup of $G$ defined over $F$. We also give an adaptation of our argument to automorphic representations, generalizing some results from [GRS03,Shen16,JLS16,Cai] and confirming some conjectures from [Ginz06]. Our methods are a synergy of the methods of the above-mentioned papers, and of our preceding paper [GGS17].
69 - Artem Dudko 2015
We introduce a notion of measure contracting actions and show that Koopman representations corresponding to ergodic measure contracting actions are irreducible. As a corollary we obtain that Koopman representations associated to canonical actions of Higman-Thompson groups are irreducible. We also show that the actions of weakly branch groups on the boundaries of rooted trees are measure contracting. This gives a new point of view on irreducibility of the corresponding Koopman representations.
We introduce graded Hecke algebras H based on a (possibly disconnected) complex reductive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup M of G. These generalize the graded Hecke algebras defined and investigated by Lus ztig for connected G. We develop the representation theory of the algebras H. obtaining complete and canonical parametrizations of the irreducible, the irreducible tempered and the discrete series representations. All the modules are constructed in terms of perverse sheaves and equivariant homology, relying on work of Lusztig. The parameters come directly from the data (G,M,L) and they are closely related to Langlands parameters. Our main motivation for considering these graded Hecke algebras is that the space of irreducible H-representations is canonically in bijection with a certain set of logarithms of enhanced L-parameters. Therefore we expect these algebras to play a role in the local Langlands program. We will make their relation with the local Langlands correspondence, which goes via affine Hecke algebras, precise in a sequel to this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا