ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition of two-dimensional Ising models on the honeycomb and related lattices with striped random impurities

111   0   0.0 ( 0 )
 نشر من قبل Satoshi Morita
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional Ising models on the honeycomb lattice and the square lattice with striped random impurities are studied to obtain their phase diagrams. Assuming bimodal distributions of the random impurities where all the non-zero couplings have the same magnitude, exact critical values for the fraction p of ferromagnetic bonds at the zero-temperature (T=0) are obtained. The critical lines in the p-T plane are drawn by numerically evaluating the Lyapunov exponent of random matrix products.



قيم البحث

اقرأ أيضاً

We study ground-state properties of the two-dimensional random-bond Ising model with couplings having a concentration $pin[0,1]$ of antiferromagnetic and $(1-p)$ of ferromagnetic bonds. We apply an exact matching algorithm which enables us the study of systems with linear dimension $L$ up to 700. We study the behavior of the domain-wall energies and of the magnetization. We find that the paramagnet-ferromagnet transition occurs at $p_c sim 0.103$ compared to the concentration $p_nsim 0.109$ at the Nishimory point, which means that the phase diagram of the model exhibits a reentrance. Furthermore, we find no indications for an (intermediate) spin-glass ordering at finite temperature.
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul ate the critical temperature, as well as the critical exponents $gamma/ u$, $beta/ u$, and $1/ u$ for several values of the rewiring probability $p$. We find that this disorder system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The Ising model on {it directed} small-world lattices presents in fact a second-order phase transition with new critical exponents which do not dependent of $p$, but are identical to the exponents of the Ising model and the spin-1 Blume-Capel model on {it directed} small-world network.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit h a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.
The principle characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here, the disorder allows for negative edge-weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization (ACO) heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter rho that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of rho for different bias strengths B is put under scrutiny. Upon tuning rho, the probability to find such a feasible lattice walk increases from zero to one. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point rho_c, resulting from numerically exact and static simulations in terms of the NWP model can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
We investigate the behavior of the Ising model on two connected Barabasi-Albert scale-free networks. We extend previous analysis and show that a first order temperature-driven phase transition occurs in such system. The transition between antiparalel ly ordered networks to paralelly ordered networks is shown to be discontinuous. We calculate the critical temperature. We confirm the calculations with numeric simulations using Monte-Carlo methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا