ﻻ يوجد ملخص باللغة العربية
In this reply we show that the criticisms raised by J. Noronha are based on a misapplication of the model we have proposed in [A. Jaouadi, M. Telmini, E. Charron, Phys. Rev. A 83, 023616 (2011)]. Here we explicitly discuss the range of validity of the approximations underlying our analytical model. We also show that the discrepancies pointed out for very small atom numbers and for very anisotropic traps are not surprising since these conditions exceed the range of validity of the model.
Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number $N$ of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation
We present a method for producing three-dimensional Bose-Einstein condensates using only laser cooling. The phase transition to condensation is crossed with $2.5 {times} 10^{4}$ $^{87}mathrm{Rb}$ atoms at a temperature of $T_{mathrm{c}} = 0.6 mumathr
The partition function and specific heat of a system consisting of a finite number of bosons confined in an external potential are calculated in canonical ensemble. Using the grand partition function as the generating function of the partition functi
We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order $
To investigate the phenomenon of Bose-Einstein condensation in perfect crystals a hierarchy of equations for reduced density matrices that describes a thermodynamically equilibrium quantum system is employed, the hierarchy being obtained earlier by t