ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct laser cooling to Bose-Einstein condensation in a dipole trap

109   0   0.0 ( 0 )
 نشر من قبل Alban Urvoy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for producing three-dimensional Bose-Einstein condensates using only laser cooling. The phase transition to condensation is crossed with $2.5 {times} 10^{4}$ $^{87}mathrm{Rb}$ atoms at a temperature of $T_{mathrm{c}} = 0.6 mumathrm{K}$ after 1.4 s of cooling. Atoms are trapped in a crossed optical dipole trap and cooled using Raman cooling with far-off-resonant optical pumping light to reduce atom loss and heating. The achieved temperatures are well below the effective recoil temperature. We find that during the final cooling stage at atomic densities above $10^{14} mathrm{cm}^{-3}$, careful tuning of trap depth and optical-pumping rate is necessary to evade heating and loss mechanisms. The method may enable the fast production of quantum degenerate gases in a variety of systems including fermions.



قيم البحث

اقرأ أيضاً

155 - Guillaume Salomon 2014
We report the all-optical production of Bose Einstein condensates (BEC) of $^{39}$K atoms. We directly load $3 times 10^{7}$ atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupol e field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with $3 times 10^5$ atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover.
We report an apparatus and method capable of producing Bose-Einstein condensates (BECs) of ~1x10^6 87Rb atoms, and ultimately designed for sympathetic cooling of 133Cs and the creation of ultracold RbCs molecules. The method combines several elements : i) the large recapture of a magnetic quadrupole trap from a magneto-optical trap, ii) efficient forced RF evaporation in such a magnetic trap, iii) the gain in phase-space density obtained when loading the magnetically trapped atoms into a far red-detuned optical dipole trap and iv) efficient evaporation to BEC within the dipole trap. We demonstrate that the system is capable of sympathetically cooling the |F=1,m_F=-1> and |1,0> sublevels with |1,+1> atoms. Finally we discuss the applicability of the method to sympathetic cooling of 133Cs with 87Rb.
Multiply-connected traps for cold, neutral atoms fix vortex cores of quantum gases. Laguerre-Gaussian laser modes are ideal for such traps due to their phase stability. We report theoretical calculations of the Bose-Einstein condensation transition p roperties and thermal characteristics of neutral atoms trapped in multiply connected geometries formed by Laguerre-Gaussian LG{p}{l} beams. Specifically, we consider atoms confined to the anti-node of a LG{0}{1} laser mode detuned to the red of an atomic resonance frequency, and those confined in the node of a blue-detuned LG{1}{1} beam. We compare the results of using the full potential to those approximating the potential minimum with a simple harmonic oscillator potential. We find that deviations between calculations of the full potential and the simple harmonic oscillator can be up to 3%-8% for trap parameters consistent with typical experiments.
In recent years, cold atoms could prove their scientific impact not only on ground but in microgravity environments such as the drop tower in Bremen, sounding rockets and parabolic flights. We investigate the preparation of cold atoms in an optical d ipole trap, with an emphasis on evaporative cooling under microgravity. Up to $ 1times10^{6} $ rubidium-87 atoms were optically trapped from a temporarily dark magneto optical trap during free fall in the droptower in Bremen. The efficiency of evaporation is determined to be equal with and without the effect of gravity. This is confirmed using numerical simulations that prove the dimension of evaporation to be three-dimensional in both cases due to the anharmonicity of optical potentials. These findings pave the way towards various experiments on ultra-cold atoms under microgravity and support other existing experiments based on atom chips but with plans for additional optical dipole traps such as the upcoming follow-up missions to current and past spaceborne experiments.
Recent work with laser-cooled molecules in attractive optical traps has shown that the differential AC Stark shifts arising from the trap light itself can become problematic, limiting collisional shielding efficiencies, rotational coherence times, an d laser-cooling temperatures. In this work, we explore trapping and laser-cooling of CaF molecules in a ring-shaped repulsive optical trap. The observed dependences of loss rates on temperature and barrier height show characteristic behavior of repulsive traps and indicate strongly suppressed average AC Stark shifts. Within the trap, we find that $Lambda$-enhanced gray molasses cooling is effective, producing similar minimum temperatures as those obtained in free space. By combining in-trap laser cooling with dynamical reshaping of the trap, we also present a method that allows highly efficient and rapid transfer from molecular magneto-optical traps into conventional attractive optical traps, which has been an outstanding challenge for experiments to date. Notably, our method could allow nearly lossless transfer over millisecond timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا