ترغب بنشر مسار تعليمي؟ اضغط هنا

Hopping magnetoresistance in ion irradiated monolayer graphene

402   0   0.0 ( 0 )
 نشر من قبل Eugene Kogan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetoresistance (MR) of ion irradiated monolayer graphene samples with variable-range hopping (VRH) mechanism of conductivity was measured at temperatures down to $T = 1.8$ K in magnetic fields up to $B = 8$ T. It was observed that in perpendicular magnetic fields, hopping resistivity $R$ decreases, which corresponds to negative MR (NMR), while parallel magnetic field results in positive MR (PMR) at low temperatures. NMR is explained on the basis of the orbital model in which perpendicular magnetic field suppresses the destructive interference of many paths through the intermediate sites in the total probability of the long-distance tunneling in the VRH regime. At low fields, a quadratic dependence ($|Delta R/R|sim B^2$) of NMR is observed, while at $B > B^*$, the quadratic dependence is replaced by the linear one. It was found that all NMR curves for different samples and different temperatures could be merged into common dependence when plotted as a function of $B/B^*$. It is shown that $B^*sim T^{1/2}$ in agreement with predictions of the orbital model. The obtained values of $B^*$ allowed also to estimate the localization radius $xi$ of charge carriers for samples with different degree of disorder. PMR in parallel magnetic fields is explained by suppression of hopping transitions via double occupied states due to alignment of electron spins.



قيم البحث

اقرأ أيضاً

We report a proof-of-concept study of extraordinary magnetoresistance (EMR) in devices of monolayer graphene encapsulated in hexagonal boron nitride, having metallic edge contacts and a central metal shunt. Extremely large EMR values, $MR=(R(B) - R_0 ) / R_0sim 10^5$, are achieved in part because $R_0$ approaches or crosses zero as a function of the gate voltage, exceeding that achieved in high mobility bulk semiconductor devices. We highlight the sensitivity, $dR/dB$, which in two-terminal measurements is the highest yet reported for EMR devices, and in particular exceeds prior results in graphene-based devices by a factor of 20. An asymmetry in the zero-field transport is traced to the presence of $pn$-junctions at the graphene-metal shunt interface.
We present magnetotransport measurements at classical magnetic fields for three graphene monolayers with various levels of disorder. A square root magnetoresistance (SRMR) behavior is observed in one sample which has the characteristic sub-linear con ductivity signaling on the presence of short-range disorder in this sample. No square root MR was observed in other samples where short-range scattering is inessential as it is evident from the gate voltage dependences of their conductivities. Comparing our experimental data for the sample with theoretical calculations we found a good qualitative agreement and established the conditions which should be fulfilled in graphene to observe the SRMR experimentally.
117 - E. Zion , A.Haran , A. V. Butenko 2015
Gradual localization of charge carriers was studied in a series of micro-size samples of monolayer graphene fabricated on the common large scale film and irradiated by different doses of C$^+$ ions with energy 35 keV. Measurements of the temperature dependence of conductivity and magnetoresistance in fields up to 4 T showed that at low disorder, the samples are in the regime of weak localization and antilocalization. Further increase of disorder leads to strong localization regime, when conductivity is described by the variable-range-hopping (VRH) mechanism. A crossover from the Mott regime to the Efros-Shklovskii regime of VRH is observed with decreasing temperature. Theoretical analysis of conductivity in both regimes showed a remarkably good agreement with experimental data.
We demonstrate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene can be strongly modified by a time-periodic driving field even in the weak drive regime. This effect is due to the opening of a dynamical band gap at the Dirac point s when graphene is exposed to circularly polarized light. Using Keldysh-Floquet Greens functions, we develop a theoretical framework to calculate the time-averaged RKKY coupling under weak periodic drives and show that its magnitude in undoped graphene can be decreased controllably by increasing the driving strength, while mostly maintaining its ferromagnetic or antiferromagnetic character. In doped graphene, we find RKKY oscillations with a period that is tunable by the driving field. When a sufficiently strong drive is turned on that brings the Fermi level completely within the dynamically opened gap, the behavior of the RKKY coupling changes qualitatively from that of doped to undoped irradiated graphene.
We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in a temperature range from 1.5 to 150 K. The observed linear magnetoresistance disappears away from charge neutrality ruling out the traditional explanation of the effect in terms of the classical random resistor network model. We show that experimental results qualitatively agree with a phenomenological two-fluid model taking into account electron-hole recombination and finite-size sample geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا