ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization of charge carriers in monolayer graphene gradually disordered by ion irradiation

109   0   0.0 ( 0 )
 نشر من قبل Eugene Kogan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gradual localization of charge carriers was studied in a series of micro-size samples of monolayer graphene fabricated on the common large scale film and irradiated by different doses of C$^+$ ions with energy 35 keV. Measurements of the temperature dependence of conductivity and magnetoresistance in fields up to 4 T showed that at low disorder, the samples are in the regime of weak localization and antilocalization. Further increase of disorder leads to strong localization regime, when conductivity is described by the variable-range-hopping (VRH) mechanism. A crossover from the Mott regime to the Efros-Shklovskii regime of VRH is observed with decreasing temperature. Theoretical analysis of conductivity in both regimes showed a remarkably good agreement with experimental data.



قيم البحث

اقرأ أيضاً

The Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C$^{+}$ and Xe$^{+}$ ions were measured after annealing in high vacuum, and in forming gas (95%Ar+5%H$_{2}$). It was found that these metho ds of annealing have dramatically different influence on the RS lines. Annealing in vacuum below 500$^{circ}$C leads to significant decrease of both D-line, associated with defects, and 2D-line, associated with the intact lattice structure, which can be explained by annealing-induced enhanced doping. Further annealing in vacuum up to 1000$^{circ}$C leads to significant increase of 2D-line together with continuous decrease of D-line, which gives evidence of partial removal of defects and recovery of the damaged lattice. Annealing in forming gas is less effective in this sense. The blue shift of all lines is observed after annealing. It is shown that below 500$^{circ}$C, the unintentional doping is the main mechanism of shift, while at higher annealing temperatures, the lattice strain dominates due to mismatch of the thermal expansion coefficient of graphene and the SiO$_{2}$ substrate. Inhomogeneous distribution of stress and doping across the samples leads to the correlated variation of the amplitude and the peak position of RS lines.
97 - I. Shlimak , E. Zion , A. Butenko 2019
A brief review of experiments directed to study a gradual localization of charge carriers and metal-insulator transition in samples of disordered monolayer graphene is presented. Disorder was induced by irradiation with different doses of heavy and l ight ions. Degree of disorder was controlled by measurements of the Raman scattering spectra. The temperature dependences of conductivity and magnetoresistance (MR) showed that at low disorder, conductivity is governed by the weak localization and antilocalization regime. Further increase of disorder leads to strong localization of charge carriers, when the conductivity is described by the variable-range-hopping (VRH) mechanism. It was observed that MR in the VRH regime is negative in perpendicular fields and is positive in parallel magnetic fields which allowed to reveal different mechanisms of hopping MR. Theoretical analysis is in a good agreement with experimental data.
We report on nanosecond long, gate-dependent valley lifetimes of free charge carriers in monolayer WSe$_2$, unambiguously identified by the combination of time-resolved Kerr rotation and electrical transport measurements. While the valley polarizatio n increases when tuning the Fermi level into the conduction or valence band, there is a strong decrease of the respective valley lifetime consistent with both electron-phonon and spin-orbit scattering. The longest lifetimes are seen for spin-polarized bound excitons in the band gap region. We explain our findings via two distinct, Fermi level-dependent scattering channels of optically excited, valley polarized bright trions either via dark or bound states. By electrostatic gating we demonstrate that the transition metal dichalcogenide WSe$_2$ can be tuned to be either an ideal host for long-lived localized spin states or allow for nanosecond valley lifetimes of free charge carriers (> 10 ns).
116 - I. Shlimak , A. Butenko , E. Kogan 2019
Broadening of the Raman scattering (RS) spectra was studied in monolayer graphene samples irradiated with various dose of ions followed by annealing of radiation damage at different temperatures. It is shown that the width {Gamma} (full width at half maximum, FWHM) of three main RS lines (G-, D-, and 2D) increases linearly with increase of the density of irradiation-induced point defects N d as {Delta}{Gamma} = m N d . The slope m of the linear dependencies is the same for one-phonon emitting G-line and D-line, and almost double for two-phonon emitting 2D-line. It is also shown that the width of D-line {Gamma} D for all samples is larger than one half of the width of 2D-line {Gamma} 2D , which shows that in the case of D-line, elastic electron scattering on point defects leads to an additional decreasing the lifetime of the emitted phonon. Theoretical model of the width of D-line in disordered graphene is developed which explains the experimental observations and allows to determine the numerical coefficient in the in-plane transverse optic phonon dispersion in graphene.
We describe the weak localization correction to conductivity in ultra-thin graphene films, taking into account disorder scattering and the influence of trigonal warping of the Fermi surface. A possible manifestation of the chiral nature of electrons in the localization properties is hampered by trigonal warping, resulting in a suppression of the weak anti-localization effect in monolayer graphene and of weak localization in bilayer graphene. Intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore weak localization resulting in negative magnetoresistance in both materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا