ﻻ يوجد ملخص باللغة العربية
We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiations polarization state.
Within the two antenna model, we develop a theory of the recently observed helicity-sensitive detection of terahertz radiation by FETs. The effect arises because of the mixing of the ac signals produced in the channel by the two antennas. We calculat
Detectors of high-frequency radiation based on high-electron-mobility transistors benefit from low noise, room-temperature operation, and the possibility to perform radiation spectroscopy using gate-tunable plasmon resonance. Despite successful proof
We report on experimental studies of terahertz (THz) radiation transmission through grating-gate graphene-channel transistor nanostructures and demonstrate room temperature THz radiation amplification stimulated by current-driven plasmon excitations.
We demonstrate dual-gated $p$-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe$_2$) using high work-function platinum source/drain contacts, and a hexagonal boron nitride top-gate dielectric. A device topology with con
This is a brief overview of the main physical ideas for application of field effect transistors for generation and detection of TeraHertz radiation. Resonant frequencies of the two-dimensional plasma oscillations in FETs increase with the reduction o