ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors

108   0   0.0 ( 0 )
 نشر من قبل Sergey Ganichev
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiations polarization state.

قيم البحث

اقرأ أيضاً

Within the two antenna model, we develop a theory of the recently observed helicity-sensitive detection of terahertz radiation by FETs. The effect arises because of the mixing of the ac signals produced in the channel by the two antennas. We calculat e the helicity-dependent part of the photoresponse and its dependence on the antenna impedance, gate length, and gate voltage.
Detectors of high-frequency radiation based on high-electron-mobility transistors benefit from low noise, room-temperature operation, and the possibility to perform radiation spectroscopy using gate-tunable plasmon resonance. Despite successful proof -of-concept demonstrations, the responsivity of transistor-based detectors of THz radiation, at present, remains fairly poor. To resolve this problem, we propose a class of devices supporting singular plasmon modes, i.e. modes with strong electric fields near keen electrodes. A large plasmon-enhanced electric field results in amplified non-linearities, and thus efficient ac-to-dc conversion. We analyze sub-terahertz detectors based on a two-dimensional electron system (2DES) in the Corbino geometry as a prototypical and exactly solvable model and show that the responsivity scales as $1/r_0^{2}$ with the radius of the inner contact $r_0$. This enables responsivities exceeding 10 kV/W at sub-THz frequencies for nanometer-scale contacts readily accessible by modern nanofabrication techniques.
We report on experimental studies of terahertz (THz) radiation transmission through grating-gate graphene-channel transistor nanostructures and demonstrate room temperature THz radiation amplification stimulated by current-driven plasmon excitations. Specifically, with increase of the direct current (dc) under periodic charge density modulation, we observe a strong red shift of the resonant THz plasmon absorption, its complete bleaching, followed by the amplification and blue shift of the resonant plasmon frequency. Our results are, to the best of our knowledge, the first experimental observation of energy transfer from dc current to plasmons leading to THz amplification. We present a simple model allowing for the phenomenological description of the observed amplification phenomena. This model shows that in the presence of dc current the radiation-induced correction to dissipation is sensitive to the phase shift between THz oscillations of carrier density and drift velocity, and with increase of the current becomes negative, leading to amplification. The experimental results of this work as all obtained at room temperature, pave the way towards the new 2D plasmons based, voltage tuneable THz radiation amplifiers.
We demonstrate dual-gated $p$-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe$_2$) using high work-function platinum source/drain contacts, and a hexagonal boron nitride top-gate dielectric. A device topology with con tacts underneath the WSe$_2$ results in $p$-FETs with $I_{ON}$/$I_{OFF}$ ratios exceeding 10$^7$, and contacts that remain Ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm$^2$/Vs at room temperature, and approaching 4,000 cm$^2$/Vs at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities, and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering, or defects.
150 - M.I. Dyakonov 2011
This is a brief overview of the main physical ideas for application of field effect transistors for generation and detection of TeraHertz radiation. Resonant frequencies of the two-dimensional plasma oscillations in FETs increase with the reduction o f the channel dimensions and reach the THz range for sub-micron gate lengths. When the mobility is high enough, the dynamics of a short channel FET at THz frequencies is dominated by plasma waves. This may result, on the one hand, in a spontaneous generation of plasma waves by a dc current and on the other hand, in a resonant response to the incoming radiation. In the opposite case, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا