ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of helicity-sensitive terahertz radiation detection by field effect transistors

93   0   0.0 ( 0 )
 نشر من قبل M. I. Dyakonov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the two antenna model, we develop a theory of the recently observed helicity-sensitive detection of terahertz radiation by FETs. The effect arises because of the mixing of the ac signals produced in the channel by the two antennas. We calculate the helicity-dependent part of the photoresponse and its dependence on the antenna impedance, gate length, and gate voltage.

قيم البحث

اقرأ أيضاً

We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization the current me asured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiations polarization state.
150 - M.I. Dyakonov 2011
This is a brief overview of the main physical ideas for application of field effect transistors for generation and detection of TeraHertz radiation. Resonant frequencies of the two-dimensional plasma oscillations in FETs increase with the reduction o f the channel dimensions and reach the THz range for sub-micron gate lengths. When the mobility is high enough, the dynamics of a short channel FET at THz frequencies is dominated by plasma waves. This may result, on the one hand, in a spontaneous generation of plasma waves by a dc current and on the other hand, in a resonant response to the incoming radiation. In the opposite case, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector.
We report on terahertz radiation detection with InGaAs/InAlAs Field Effect Transistors in quantizing magnetic field. The photovoltaic detection signal is investigated at 4.2 K as a function of the gate voltage and magnetic field. Oscillations analogo us to the Shubnikov-de Haas oscillations, as well as their strong enhancement at the cyclotron resonance, are observed. The results are quantitatively described by a recent theory, showing that the detection is due to rectification of the terahertz radiation by plasma waves related nonlinearities in the gated part of the channel.
Detectors of high-frequency radiation based on high-electron-mobility transistors benefit from low noise, room-temperature operation, and the possibility to perform radiation spectroscopy using gate-tunable plasmon resonance. Despite successful proof -of-concept demonstrations, the responsivity of transistor-based detectors of THz radiation, at present, remains fairly poor. To resolve this problem, we propose a class of devices supporting singular plasmon modes, i.e. modes with strong electric fields near keen electrodes. A large plasmon-enhanced electric field results in amplified non-linearities, and thus efficient ac-to-dc conversion. We analyze sub-terahertz detectors based on a two-dimensional electron system (2DES) in the Corbino geometry as a prototypical and exactly solvable model and show that the responsivity scales as $1/r_0^{2}$ with the radius of the inner contact $r_0$. This enables responsivities exceeding 10 kV/W at sub-THz frequencies for nanometer-scale contacts readily accessible by modern nanofabrication techniques.
Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be use d for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا