ﻻ يوجد ملخص باللغة العربية
Measurements of heavy flavor quark (charm and bottom) correlations in heavy ion collisions are instrumental to understand the flavor dependence of energy loss mechanisms in hot and dense QCD media. Experimental measurements of these correlations in baseline $p$+$p$ collisions are crucial to understand the contributions of perturbative and non-perturbative QCD processes to the correlation functions and further help in interpreting correlation measurements in heavy ion collisions. In this paper, we investigate $D$-$bar{D}$ meson correlations and $D$ with one particle from $D$ meson decay daughter correlations using PYTHIA Event Generator in $p$ + $p$ collisions at $sqrt{s}$ = 200, 500 and 5500 GeV. Charm/bottom events are found to contribute mainly to the away side/near side pattern of $D$-electron correlations, respectively. In the energy region of RHIC, $D$-$bar{D}$ correlations inherit initial $c$-$bar{c}$ correlations and $Brightarrow DX$ decay contribution is insignificant. Furthermore, Bottom quark correlations are suggested to be applicable at LHC energy, as the bottom contributions on $D$ related correlations are relatively large.
While string models describe initial state radiation in ultra-relativistic nuclear collisions well, they mainly differ in their end-point positions of the strings in spatial rapidity. We present a generic model where wounded constituents are amended
In a framework of a semi-analytic model with longitudinally extended strings of fluctuating end-points, we demonstrate that the rapidity spectra and two-particle correlations in collisions of Pb-Pb, p-Pb, and p-p at the energies of the Large Hadron C
It is now well established that jet modification is a multistage effect; hence a single model alone cannot describe all facets of jet modification. The JETSCAPE framework is a multistage framework that uses several modules to simulate different stage
In high-energy collisions, massive heavy quarks are produced back-to-back initially and they are sensitive to early dynamical conditions. The strong collective partonic wind from the fast expanding quark-gluon plasma created in high-energy nuclear co
We discuss and compare different approaches to include gluon transverse momenta for heavy quark-antiquark pair production. The correlations in azimuthal angle and in heavy quark, heavy antiquark transverse momenta are studied in detail. The results a