ترغب بنشر مسار تعليمي؟ اضغط هنا

Co adatoms on Cu surfaces: ballistic conductance and Kondo temperature

77   0   0.0 ( 0 )
 نشر من قبل Pier Paolo Baruselli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kondo zero bias anomaly of Co adatoms probed by scanning tunneling microscopy is known to depend on the height of the tip above the surface, and this dependence is different on different low index Cu surfaces. On the (100) surface, the Kondo temperature first decreases then increases as the tip approaches the adatom, while on the (111) surface it is virtually unaffected. These trends are captured by combined density functional theory and numerical renormalization group (DFT+NRG) calculations. The adatoms are found to be described by an S = 1 Anderson model on both surfaces, and ab initio calculations help identify the symmetry of the active d orbitals. We correctly reproduce the Fano lineshape of the zero bias anomaly for Co/Cu(100) in the tunneling regime but not in the contact regime, where it is probably dependent on the details of the tip and contact geometry. The lineshape for Co/Cu(111) is presumably affected by the presence of surface states, which are not included in our method. We also discuss the role of symmetry, which is preserved in our model scattering geometry but most likely broken in experimental conditions.

قيم البحث

اقرأ أيضاً

Low-temperature scanning tunneling spectroscopy reveals that the Kondo temperature T_K of Co atoms adsorbed on Cu/Co/Cu(100) multilayers varies between 60 K and 134 K as the Cu film thickness decreases from 20 to 5 atomic layers. The observed change of T_K is attributed to a variation of the density of states at the Fermi level rho_F induced by quantum well states confined to the Cu film. A model calculation based on the quantum oscillations of rho_F at the belly and the neck of the Cu Fermi surface reproduces most of the features in the measured variation of T_K.
Linear atomic chains containing a single Kondo atom, Co, and several nonmagnetic atoms, Cu, were assembled atom by atom on Cu(111) with the tip of a scanning tunneling microscope. The resulting one-dimensional wires, Cu$_m$CoCu$_n$ ($0leq m, nleq 5$) , exhibit a rich evolution of the single-Co Kondo effect with the variation of $m$ and $n$, as inferred from changes in the line shape of the Abrikosov-Suhl-Kondo resonance. The most striking result is the quenching of the resonance in CuCoCu$_2$ and Cu$_2$CoCu$_2$ clusters. State-of-the-art first-principles calculations were performed to unravel possible microscopic origins of the remarkable experimental observations.
Using a numerically exact first-principles many-body approach, we revisit the prototypical Kondo case of a cobalt impurity on copper. Even though this is considered a well understood example of the Kondo effect, we reveal an unexpectedly strong depen dence of the screening properties on the parametrization of the local Coulomb tensor. As a consequence, the Kondo temperature can vary by orders of magnitude depending on the complexity of the parametrization of the electron-electron interaction. Further, we challenge the established picture of a spin-$1$ moment involving two cobalt $d$-orbitals only, as orbital-mixing interaction terms boost the contribution of the remainder of the $d$-shell.
We investigate the electronic structure of cobalt atoms on a copper surface and in a copper host by combining density functional calculations with a numerically exact continuous-time quantum Monte Carlo treatment of the five-orbital impurity problem. In both cases we find low energy resonances in the density of states of all five Co $d$-orbitals. The corresponding self-energies indicate the formation of a Fermi liquid state at low temperatures. Our calculations yield the characteristic energy scale -- the Kondo temperature -- for both systems in good agreement with experiments. We quantify the charge fluctuations in both geometries and suggest that Co in Cu must be described by an Anderson impurity model rather than by a model assuming frozen impurity valency at low energies. We show that fluctuations of the orbital degrees of freedom are crucial for explaining the Kondo temperatures obtained in our calculations and measured in experiments.
94 - A. A. Aligia 2018
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا