ﻻ يوجد ملخص باللغة العربية
We introduce and analyze the notion of mutual entropy-production (MEP) in autonomous systems. Evaluating MEP rates is in general a difficult task due to non-Markovian effects. For bipartite systems, we provide closed expressions in various limiting regimes which we verify using numerical simulations. Based on the study of a biochemical and an electronic sensing model, we suggest that the MEP rates provide a relevant measure of the accuracy of sensing.
Information dynamics is an emerging description of information processing in complex systems which describes systems in terms of intrinsic computation, identifying computational primitives of information storage and transfer. In this paper we make a
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d
We study the entropy production rate in systems described by linear Langevin equations, containing mixed even and odd variables under time reversal. Exact formulas are derived for several important quantities in terms only of the means and covariance
The entropy production is one of the most essential features for systems operating out of equilibrium. The formulation for discrete-state systems goes back to the celebrated Schnakenbergs work and hitherto can be carried out when for each transition
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical re