ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic modeling of local dynamo processes on the Sun

99   0   0.0 ( 0 )
 نشر من قبل Irina Kitiashvili
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields are usually observed in the quiet Sun as small-scale elements that cover the entire solar surface (the `salt and pepper patterns in line-of-sight magnetograms). By using 3D radiative MHD numerical simulations we find that these fields result from a local dynamo action in the top layers of the convection zone, where extremely weak seed magnetic fields (e.g., from a $10^{-6}$ G) can locally grow above the mean equipartition field, to a stronger than 2000~G field localized in magnetic structures. Our results reveal that the magnetic flux is predominantly generated in regions of small-scale helical downflows. We find that the local dynamo action takes place mostly in a shallow, about 500~km deep, subsurface layer, from which the generated field is transported into the deeper layers by convective downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and horizontal fields above the photosphere can be explained by small-scale magnetic loops produced by the dynamo. Such small-scale loops play an important role in the structure and dynamics of the solar atmosphere and that their detection in observations is critical for understanding the local dynamo action on the Sun.



قيم البحث

اقرأ أيضاً

In the quiet Sun, magnetic fields are usually observed as small-scale magnetic elements, `salt and pepper, covering the entire solar surface. By using 3D radiative MHD numerical simulations we demonstrate that these fields are a result of local dynam o action in the top layers of the convection zone, where extremely weak `seed magnetic fields can locally grow above the mean equipartition field (e.g., from a $10^{-6}$ G `seed field to more than 1000 G magnetic structures). We find that the local dynamo action takes place only in a shallow, about 500 km deep, subsurface layer, from which the generated field is transported into deeper layers by convection downdrafts. We demonstrate that the observed dominance of vertical magnetic fields at the photosphere and the horizontal fields above the photosphere can be explained by multi-scale magnetic loops produced by the dynamo.
We explore effects of random non-axisymmetric perturbations of kinetic helicity (the $alpha$ effect) and diffusive decay of bipolar magnetic regions on generation and evolution of large-scale non-axisymmetric magnetic fields on the Sun. Using a reduc ed 2D nonlinear mean-field dynamo model and assuming that bipolar regions emerge due to magnetic buoyancy in situ of the large-scale dynamo action, we show that fluctuations of the $alpha$ effect can maintain the non-axisymmetric magnetic fields through a solar-type $alpha^{2}Omega$ dynamo process. It is found that diffusive decay of bipolar active regions is likely to be the primary source of the non-axisymmetric magnetic fields observed on the Sun. Our results show that the non-axisymmetric dynamo model with stochastic perturbations of the $alpha$ effect can explain periods of extremely high activity (`super-cycle events) as well as periods of deep decline of magnetic activity. We compare the models with synoptic observations of solar magnetic fields for the last four activity cycles, and discuss implications of our results for interpretation of observations of stellar magnetic activity.
Sunspots are cool areas caused by strong surface magnetic fields inhibiting convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars more active than the Sun have more and stronger dark spots than in the solar case, including on the rotational pole itself. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars than the Sun, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more spot activity), which are crucial constraints of dynamo theory. Polar spots, inferred only from Doppler tomography, could plausibly be observational artifacts, casting some doubt on their very existence. Here we report imaging of the old, magnetically-active star $zeta$ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two epochs, while lower-latitude spot structures in both hemispheres do not persist between observations revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on $zeta$ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.
Various models of solar subsurface stratification are tested in the global EULAG-MHD solver to simulate diverse regimes of near-surface convective transport. Sub- and superadiabacity are altered at the surface of the model ($ r > 0.95~R_{odot}$) to e ither suppress or enhance convective flow speeds in an effort to investigate the impact of the near-surface layer on global dynamics. A major consequence of increasing surface convection rates appears to be a significant alteration of the distribution of angular momentum, especially below the tachocline where the rotational frequency predominantly increases at higher latitudes. These hydrodynamic changes correspond to large shifts in the development of the current helicity in this stable layer ($r<0.72R_{odot}$), significantly altering its impact on the generation of poloidal and toroidal fields at the tachocline and below, acting as a major contributor towards transitions in the dynamo cycle. The enhanced near-surface flow speed manifests in a global shift of the toroidal field ($B_{phi}$) in the butterfly diagram - from a North-South symmetric pattern to a staggered anti-symmetric emergence.
We present new brightness and magnetic images of the weak-line T Tauri star V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope Bernard Lyot (TBL). The brightness image shows a large polar spot and significant spot coverage at l ower latitudes. The magnetic maps show a field that is predominantly dipolar and non-axisymmetric with a strong azimuthal component. The field is 50% poloidal and 50% toroidal, and there is very little differential rotation apparent from the magnetic images. A photometric monitoring campaign on this star has previously revealed V-band variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter. The Doppler image presented here is consistent with this low variability. Calculating the flux predicted by the mapped spot distribution gives an peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of the lightcurve, compared with previous observations, appears to be related to a change in the distribution of the spots, rather than the number or area. This paper is the first from a Zeeman-Doppler imaging campaign being carried out on V410 Tau between 2009-2012 at TBL. During this time it is expected that the lightcurve will return to a high amplitude state, allowing us to ascertain whether the photometric changes are accompanied by a change in the magnetic field topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا