ﻻ يوجد ملخص باللغة العربية
In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stokesian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for the wave-space mobility computation. To meet the performance requirement of dynamic simulations, we use Graphic Processing Units (GPU) to evaluate the suspension mobility, and achieve an order of magnitude speedup compared to a CPU implementation. For further speedup, we develop a novel far-field block-diagonal preconditioner to reduce the far-field evaluations in the iterative solver, and SEASD-nf, a polydisperse extension of the mean-field Brownian approximation of Banchio & Brady [J. Chem. Phys. 118 (2003) 10323]. We extensively discuss implementation and parameter selection strategies in SEASD, and demonstrate the spectral accuracy in the mobility evaluation and the overall $mathcal{O}(Nlog N)$ computation scaling. We present three computational examples to further validate SEASD and SEASD-nf in monodisperse and bidisperse suspensions: the short-time transport properties, the equilibrium osmotic pressure and viscoelastic moduli, and the steady shear Brownian rheology. Our validation results show that the agreement between SEASD and SEASD-nf is satisfactory over a wide range of parameters, and also provide significant insight into the dynamics of polydisperse colloidal suspensions.
It is shown that the Shan-Chen (SC) model for non-ideal lattice fluids can be made compliant with a pseudo free-energy principle by simple addition of a gradient force, whose expression is uniquely specified in terms of the fluid density. This additi
We propose a novel approach to the numerical simulation of thin film flows, based on the lattice Boltzmann method. We outline the basic features of the method, show in which limits the expected thin film equations are recovered and perform validation
An articulated body is defined as a finite number of rigid bodies connected by a set of arbitrary constraints that limit the relative motion between pairs of bodies. Such a general definition encompasses a wide variety of situations in the microscopi
We introduce a numerical solver for the spatially inhomogeneous Boltzmann equation using the Burnett spectral method. The modelling and discretization of the collision operator are based on the previous work [Z. Cai, Y. Fan, and Y. Wang, Burnett spec
Soft particles at fluid interfaces play an important role in many aspects of our daily life, such as the food industry, paints and coatings, and medical applications. Analytical methods are not capable of describing the emergent effects of the comple