ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoscale simulation of soft particles with tunable contact angle in multi-component fluids

105   0   0.0 ( 0 )
 نشر من قبل Jens Harting
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Soft particles at fluid interfaces play an important role in many aspects of our daily life, such as the food industry, paints and coatings, and medical applications. Analytical methods are not capable of describing the emergent effects of the complex dynamics of suspensions of many soft particles, whereas experiments typically either only capture bulk properties or require invasive methods. Computational methods are therefore a great tool to complement experimental work. However, an efficient and versatile numerical method is needed to model dense suspensions of many soft particles. In this article we propose a method to simulate soft particles in a multi-component fluid, both at and near fluid-fluid interfaces, based on the lattice Boltzmann method, and characterize the error stemming from the fluid-structure coupling for the particle equilibrium shape when adsorbed onto a fluid-fluid interface. Furthermore, we characterize the influence of the preferential contact angle of the particle surface and the particle softness on the vertical displacement of the center of mass relative to the fluid interface. Finally, we demonstrate the capability of our model by simulating a soft capsule adsorbing onto a fluid-fluid interface with a shear flow parallel to the interface, and the covering of a droplet suspended in another fluid by soft particles with different wettability.

قيم البحث

اقرأ أيضاً

The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug deliver and semiconductor manufacturing. By means of numerical simulations based on the Direct Simulation Monte Carlo (DSMC) method, we investigate the influence of the orientation of the particle and rarefaction on the drag and lift coefficients, in the case of prolate and oblate ellipsoidal particles immersed in a uniform ambient flow. This is done by modelling the solid particles using a cut-cell algorithm embedded within our DSMC solver. In this approach, the surface of the particle is described by its analytical expression and the microscopic gas-solid interactions are computed exactly using a ray-tracing technique. The measured drag and lift coefficients are used to extend the correlations available in the continuum regime to the rarefied regime, focusing on the transitional and free-molecular regimes. The functional forms for the correlations for the ellipsoidal particles are chosen as a generalisation from the spherical case. We show that the fits over the data from numerical simulations can be extended to regimes outside the simulated range of $Kn$ by testing the obtained predictive model on values of $Kn$ that where not included in the fitting process, allowing to achieve an higher precision when compared with existing predictive models from literature. Finally, we underline the importance of this work in providing new correlations for non-spherical particles that can be used for point-particle Euler-Lagrangian simulations to address the problem of contamination from finite-size particles in high-tech mechanical systems.
We propose a mesoscopic model of binary fluid mixtures with tunable viscosity ratio based on a two-range pseudo-potential lattice Boltzmann method, for the simulation of soft flowing systems. In addition to the short range repulsive interaction betwe en species in the classical single-range model, a competing mechanism between the short-range attractive and mid-range repulsive interactions is imposed within each species. Besides extending the range of attainable surface tension as compared with the single-range model, the proposed scheme is also shown to achieve a positive disjoining pressure, independently of the viscosity ratio. The latter property is crucial for many microfluidic applications involving a collection of disperse droplets with a different viscosity from the continuum phase. As a preliminary application, the relative effective viscosity of a pressure-driven emulsion in a planar channel is computed.
We extend the physics-informed neural network (PINN) method to learn viscosity models of two non-Newtonian systems (polymer melts and suspensions of particles) using only velocity measurements. The PINN-inferred viscosity models agree with the empiri cal models for shear rates with large absolute values but deviate for shear rates near zero where the analytical models have an unphysical singularity. Once a viscosity model is learned, we use the PINN method to solve the momentum conservation equation for non-Newtonian fluid flow using only the boundary conditions.
In this paper we compare different theoretical approaches to describe the dispersion of collective modes in Yukawa fluids when the inter-particle coupling is relatively weak, so that kinetic and potential contributions to the dispersion relation comp ete. Thorough comparison with the results from molecular dymamics simulation allows us to conclude that in the regime investigated the best description is provided by the sum of the generalized excess bulk modulus and the Bohm-Gross kinetic term.
Soft solids in fluids find wide range of applications in science and engineering, especially in the study of biological tissues and membranes. In this study, an Eulerian finite volume approach has been developed to simulate fully resolved incompressi ble hyperelastic solids immersed in a fluid. We have adopted the recently developed reference map technique (RMT) by Valkov et. al (J. Appl. Mech., 82, 2015) and assessed multiple improvements for this approach.These modifications maintain the numerical robustness of the solver and allow the simulations without any artificial viscosity in the solid regions (to stabilize the solver). This has also resulted in eliminating the striations (wrinkles) of the fluid-solid interface that was seen before and hence obviates the need for any additional routines to achieve a smooth interface. An approximate projection method has been used to project the velocity field onto a divergence free field. Cost and accuracy improvements of the modifications on the method have also been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا