ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple Scalings for Various Regimes of Electron Acceleration in Surface Plasma Waves

522   0   0.0 ( 0 )
 نشر من قبل Caterina Riconda
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.



قيم البحث

اقرأ أيضاً

124 - David Tsiklauri 2017
In some laboratory and most astrophysical situations plasma wake-field acceleration of electrons is one dimensional, i.e. variation transverse to the beams motion can be ignored. Thus, one dimensional (1D), particle-in-cell (PIC), fully electromagnet ic simulations of electron plasma wake field acceleration are conducted in order to study the differences in electron plasma wake field acceleration in MeV versus GeV and linear versus blowout regimes. First, we show that caution needs to be taken when using fluid simulations, as PIC simulations prove that an approximation for an electron bunch not to evolve in time for few hundred plasma periods only applies when it is sufficiently relativistic. This conclusion is true irrespective of the plasma temperature. We find that in the linear regime and GeV energies, the accelerating electric field generated by the plasma wake is similar to the linear and MeV regime. However, because GeV energy driving bunch stays intact for much longer time, the final acceleration energies are much larger in the GeV energies case. In the GeV energy range and blowout regime the wakes accelerating electric field is much larger in amplitude compared to the linear case and also plasma wake geometrical size is much larger. Thus, the correct positioning of the trailing bunch is needed to achieve the efficient acceleration. For the considered case, optimally there should be approximately $(90-100) c/omega_{pe}$ distance between trailing and driving electron bunches in the GeV blowout regime.
220 - Ido Barth , Ilya Y. Dodin , 2015
When the background density in a bounded plasma is modulated in time, discrete modes become coupled. Interestingly, for appropriately chosen modulations, the average plasmon energy might be made to grow in a ladder-like manner, achieving up-conversio n or down-conversion of the plasmon energy. This reversible process is identified as a classical analog of the effect known as quantum ladder climbing, so that the efficiency and the rate of this process can be written immediately by analogy to a quantum particle in a box. In the limit of densely spaced spectrum, ladder climbing transforms into continuous autoresonance; plasmons may then be manipulated by chirped background modulations much like electrons are autoresonantly manipulated by chirped fields. By formulating the wave dynamics within a universal Lagrangian framework, similar ladder climbing and autoresonance effects are predicted to be achievable with general linear waves in both plasma and other media.
Surface waves propagating in the semi-bounded collisional hot QCD medium (quark-gluon plasma) are considered. To investigate the effect of collisions as damping and non-ideality factor, the longitudinal and transverse dielectric functions of the quar k-gluon plasma are used within the Bhatnagar-Gross-Krook (BGK) approach. The results were obtained both analytically and numerically in the long wavelength limit. First of all, collisions lead to smaller values of surface wave frequency and their stronger damping. Secondly, the results show that non-ideality leads to the appearance of a new branch of surface waves compared to the collisionless case. The relevance of the surface excitations (waves) for the QGP realized in experiments is discussed.
197 - V. N. Soshnikov 2008
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the unifor m collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) and distribution functions, different from Maxwellian ones as with a surplus as well as with a shortage in the Maxwellian distribution function tail. It is shown that there are present for the considered cases both collisionless damping and also non-damping electron waves even in the case of non-Maxwellian distribution function.
126 - V. N. Soshnikov 2007
To better understanding the principal features of collisionless damping/growing plasma waves we have implemented a demonstrative calculation for the simplest cases of electron waves in two-stream plasmas with the delta-function type electron velocity distribution function of each of the streams with velocities v(1) and v(2). The traditional dispersion equation is reduced to an algebraic 4th order equation, for which numerical solutions are presented for a variant of equal stream densities. In the case of uniform half-infinite slab one finds two dominant type solutions: non-damping forward waves and forward complex conjugated exponentially both damping and growing waves. Beside it in this case there is no necessity of calculation any logarithmically divergent indefinite integrals. The possibility of wave amplifying might be useful in practical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا