ﻻ يوجد ملخص باللغة العربية
Quantum simulation provides quantum systems under study with analogous controllable quantum systems and has wide applications from condensed-matter physics to high energy physics and to cosmology. The quantum system of a homogeneous and isotropic field in the Friedmann-Robertson-Walker universe can be simulated by a charge in an electrically modulated ion trap. The quantum states of these time-dependent oscillators are constructed by quantum invariants. Further, we propose simulation of quantum Friedmann-Robertson-Walker universe with a minimal massive scalar field by a charged scalar field in a homogeneous, time-dependent, magnetic field in quantum electrodynamics and investigate the Cauchy problem of how the wave functions evolve.
The origin of negative pressure fluid (the dark energy) is investigated in the quantum model of the homogeneous, isotropic and closed universe filled with a uniform scalar field and a perfect fluid which defines a reference frame. The equations of th
In this paper we analyze the Dark Matter problem and the distribution of matter through two different approaches, which are linked by the possibility that the solution of these astronomical puzzles should be sought in the quantum imprinting of the Un
An oscillating, compact Friedmann universe with a massive conformally coupled scalar field is studied in the framework of quantum cosmology. The scalar field is treated as a perturbation and we look for solutions of the Wheeler-DeWitt equation descri
Quantum gravity of a brane-like Universe is formulated, and its Einstein limit is approached. Regge-Teitelboim embedding of Arnowitt-Deser-Misner formalism is carried out. Invoking a novel Lagrange multiplier, accompanying the lapse function and the
It has been shown beyond reasonable doubt that the majority (about 95%) of the total energy budget of the universe is given by the dark components, namely Dark Matter and Dark Energy. What constitutes these components remains to be satisfactorily und