ترغب بنشر مسار تعليمي؟ اضغط هنا

Objective Variables for Probabilistic Revenue Maximization in Second-Price Auctions with Reserve

124   0   0.0 ( 0 )
 نشر من قبل Maja Rudolph
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Many online companies sell advertisement space in second-price auctions with reserve. In this paper, we develop a probabilistic method to learn a profitable strategy to set the reserve price. We use historical auction data with features to fit a predictor of the best reserve price. This problem is delicate - the structure of the auction is such that a reserve price set too high is much worse than a reserve price set too low. To address this we develop objective variables, a new framework for combining probabilistic modeling with optimal decision-making. Objective variables are hallucinated observations that transform the revenue maximization task into a regularized maximum likelihood estimation problem, which we solve with an EM algorithm. This framework enables a variety of prediction mechanisms to set the reserve price. As examples, we study objective variable methods with regression, kernelized regression, and neural networks on simulated and real data. Our methods outperform previous approaches both in terms of scalability and profit.



قيم البحث

اقرأ أيضاً

We study the problem of learning a linear model to set the reserve price in an auction, given contextual information, in order to maximize expected revenue from the seller side. First, we show that it is not possible to solve this problem in polynomi al time unless the emph{Exponential Time Hypothesis} fails. Second, we present a strong mixed-integer programming (MIP) formulation for this problem, which is capable of exactly modeling the nonconvex and discontinuous expected reward function. Moreover, we show that this MIP formulation is ideal (i.e. the strongest possible formulation) for the revenue function of a single impression. Since it can be computationally expensive to exactly solve the MIP formulation in practice, we also study the performance of its linear programming (LP) relaxation. Though it may work well in practice, we show that, unfortunately, in the worst case the optimal objective of the LP relaxation can be O(number of samples) times larger than the optimal objective of the true problem. Finally, we present computational results, showcasing that the MIP formulation, along with its LP relaxation, are able to achieve superior in- and out-of-sample performance, as compared to state-of-the-art algorithms on both real and synthetic datasets. More broadly, we believe this work offers an indication of the strength of optimization methodologies like MIP to exactly model intrinsic discontinuities in machine learning problems.
We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best o f two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than $1-1/e$ approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.
A common practice in many auctions is to offer bidders an opportunity to improve their bids, known as a Best and Final Offer (BAFO) stage. This final bid can depend on new information provided about either the asset or the competitors. This paper exa mines the effects of new information regarding competitors, seeking to determine what information the auctioneer should provide assuming the set of allowable bids is discrete. The rational strategy profile that maximizes the revenue of the auctioneer is the one where each bidder makes the highest possible bid that is lower than his valuation of the item. This strategy profile is an equilibrium for a large enough number of bidders, regardless of the information released. We compare the number of bidders needed for this profile to be an equilibrium under different information settings. We find that it becomes an equilibrium with fewer bidders when less additional information is made available to the bidders regarding the competition. It follows that when the number of bidders is a priori unknown, there are some advantages to the auctioneer to not reveal information.
Setting an effective reserve price for strategic bidders in repeated auctions is a central question in online advertising. In this paper, we investigate how to set an anonymous reserve price in repeated auctions based on historical bids in a way that balances revenue and incentives to misreport. We propose two simple and computationally efficient methods to set reserve prices based on the notion of a clearing price and make them robust to bidder misreports. The first approach adds random noise to the reserve price, drawing on techniques from differential privacy. The second method applies a smoothing technique by adding noise to the training bids used to compute the reserve price. We provide theoretical guarantees on the trade-offs between the revenue performance and bid-shading incentives of these two mechanisms. Finally, we empirically evaluate our mechanisms on synthetic data to validate our theoretical findings.
We study mechanisms for selling a single item when buyers have private values for their outside options, which they forego by participating in the mechanism. This substantially changes the revenue maximization problem. For example, the seller can str ictly benefit from selling lotteries already in the single-buyer setting. We bound the menu size and the sample complexity for the optimal single-buyer mechanism. We then show that posting a single price is in fact optimal under the assumption that either (1) the outside option value is independent of the item value, and the item value distribution has decreasing marginal revenue or monotone hazard rate; or (2) the outside option value is a concave function of the item value. Moreover, when there are multiple buyers, we show that sequential posted pricing guarantees a large fraction of the optimal revenue under similar conditions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا