ترغب بنشر مسار تعليمي؟ اضغط هنا

Coalescence of ZnO nanowires grown from monodispersed Au nanoparticles

79   0   0.0 ( 0 )
 نشر من قبل Cuong Ton-That
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New insights into controlling nanowire merging phenomena are demonstrated in growth of thin ZnO nanowires using monodispersed Au colloidal nanoparticles as catalyst. Both nanowire diameter and density were found to be strongly dependent on the density of Au nanoparticles. Structural analysis and spectral cathodoluminescence imaging of the c-plane nanowire cross-sections reveal that thin isolated nanowires growing from the Au nanoparticles begin to merge and coalesce with neighbouring nanowires to form larger nanowires when their separation reaches a threshold distance. Green luminescence, which is originated from the remnants of constituent nanowires before merging, is detected at the core of fused nanowires. The distribution of nanowire diameters and green emission were found to be strongly dependent on the density of the Au nanoparticles. The merging phenomenon is attributed to electrostatic interactions between nanowire c-facets during growth and well-described by a cantilever bending model.

قيم البحث

اقرأ أيضاً

86 - R.V.K. Mangalam , Z. Zhang , T.Wu 2011
The synthesis, morphology and magneto-transport properties of nanostructure-engineered charge-ordered Pr0.5Ca0.5MnO3 grown on ZnO nanowires are reported. The stability of the charge-ordering can be tuned, but more interestingly the sign of the magnet oresistance is inverted at low temperatures. Coexistence of ferromagnetic clusters on the surface and antiferromagnetic phase in the core of the grains were considered in order to understand these features. This work suggests that such a process of growing on nanowires network can be readily extended to other transition metal oxides and open doors towards tailoring their functionalities.
It was predicted by Wigner in 1934 that the electron gas will undergo a transition to a crystallized state when its density is very low. Whereas significant progress has been made towards the detection of electronic Wigner states, their clear and dir ect experimental verification still remains a challenge. Here we address signatures of Wigner molecule formation in the transport properties of InSb nanowire quantum dot systems, where a few electrons may form localized states depending on the size of the dot (i.e. the electron density). By a configuration interaction approach combined with an appropriate transport formalism, we are able to predict the transport properties of these systems, in excellent agreement with experimental data. We identify specific signatures of Wigner state formation, such as the strong suppression of the antiferromagnetic coupling, and are able to detect the onset of Wigner localization, both experimentally and theoretically, by studying different dot sizes.
In this letter, we report a chemical route for synthesizing SiO2@Au core-shell nanoparticles. The process includes four steps: i) preparation of the silica cores, ii) grafting gold nanoparticles over SiO2 cores, iii) priming of the silica-coated gold nanoparticles with 2 and 10 nm gold colloids and finally iv) formation of complete shell. The optical extinction spectra were experimentally measured and compared to numerical calculations in order to confirm the dimensions deduced from SEM images. Finally, the potential of such core-shell nanoparticles for biosensing was probed by means of Surface Enhanced Raman Scattering measurements and revealed higher sensitivities with much lower gold quantity of such core-shell nanoparticles compared to Au nanoparticles exhibiting similar diameters.
61 - J. Farjas , C. Rath , A. Pinyol 2008
A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions.
Single crystal ZnO nanowires doped with indium are synthesized via the laser-assisted chemical vapor deposition method. The conductivity of the nanowires is measured at low temperatures in magnetic fields both perpendicular and parallel to the wire a xes. A quantitative fit of our data is obtained, consistent with the theory of a quasi-one-dimensional metallic system with quantum corrections due to weak localization and electron-electron interactions. The anisotropy of the magneto-conductivity agrees with theory. The two quantum corrections are of approximately equal magnitude with respective temperature dependences of T^-1/3 and T^-1/2. The alternative model of quasi-two-dimensional surface conductivity is excluded by the absence of oscillations in the magneto-conductivity in parallel magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا