ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of Wigner Localization in Epitaxially Grown Nanowires

211   0   0.0 ( 0 )
 نشر من قبل L\\'iney Halla Kristinsd\\'ottir
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It was predicted by Wigner in 1934 that the electron gas will undergo a transition to a crystallized state when its density is very low. Whereas significant progress has been made towards the detection of electronic Wigner states, their clear and direct experimental verification still remains a challenge. Here we address signatures of Wigner molecule formation in the transport properties of InSb nanowire quantum dot systems, where a few electrons may form localized states depending on the size of the dot (i.e. the electron density). By a configuration interaction approach combined with an appropriate transport formalism, we are able to predict the transport properties of these systems, in excellent agreement with experimental data. We identify specific signatures of Wigner state formation, such as the strong suppression of the antiferromagnetic coupling, and are able to detect the onset of Wigner localization, both experimentally and theoretically, by studying different dot sizes.



قيم البحث

اقرأ أيضاً

We present the fabrication and exploration of arrays of nanodots of $SrRuO_3$ with dot sizes between 500 nm and 15 nm. Down to the smallest dot size explored, the samples were found to be magnetic with a maximum of the Curie temperature $T_C$ achieve d by dots of 30 nm diameter. This peak in $T_C$ is associated with a dot-size-induced relief of the epitaxial strain, as evidenced by scanning transmission electron microscopy.
We report on a low-temperature transport study of a single-gate, planar field-effect device made from a free-standing, wurtzite-crystalline InAs nanosheet. The nanosheet is grown via molecular beam epitaxy and the field-effect device is characterized by gate transfer characteristic measurements and by magnetic field orientation dependent transport measurements. The measurements show that the device exhibits excellent electrical properties and the electron transport in the nanosheet is of the two-dimensional nature. Low-field magnetoconductance measurements are performed for the device at different gate voltages and temperatures, and the characteristic transport lengths, such as phase coherent length, spin-orbit length and mean free path, in the nanosheet are extracted. It is found that the spin-orbit length in the nanosheet is short, on the order of 150 nm, demonstrating the presence of strong spin-orbit interaction in the InAs nanosheet. Our results show that epitaxially grown, free-standing, InAs nanosheets can serve as an emerging semiconductor nanostructure platform for applications in spintronics, spin qubits and planar topological quantum devices.
The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-laye r MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substrate and have an area comprised between 10 {mu}m2 and 60 {mu}m2. Differential reflectance measurements performed on these crystallites show that the area of the MoS2 crystallites has an influence on the position and broadening of the B exciton while the orientation does not influence the A and B excitons of MoS2. These measurements demonstrate that differential reflectance measurements have the potential to be used to characterize the homogeneity of large area CVD grown samples.
We report on the observation of photogalvanic effects in epitaxially grown Sb_2Te_3 three-dimensional (3D) topological insulators (TI). We show that asymmetric scattering of Dirac electrons driven back and forth by the terahertz electric field result s in a dc electric current. Due to the symmetry filtration the dc current is generated in the surface electrons only and provides an opto-electronic access to probe the electric transport in TI, surface domains orientation and details of electron scattering even in 3D TI at room temperature where conventional surface electron transport is usually hindered by the high carrier density in the bulk.
The elementary optical excitations in two dimensional semiconductors hosting itinerant electrons are attractive and repulsive polarons -- excitons that are dynamically screened by electrons. Exciton-polarons have hitherto been studied in translationa lly invariant degenerate Fermi systems. Here, we show that electronic charge order breaks the excitonic translational invariance and leads to a direct optical signature in the exciton-polaron spectrum. Specifically, we demonstrate that new optical resonances appear due to spatially modulated interaction between excitons and electrons in an incompressible Mott state. Our observations demonstrate that resonant optical spectroscopy provides an invaluable tool for studying strongly correlated states, such as Wigner crystals and density waves, where exciton-electron interactions are modified by the emergence of new electronic charge or spin order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا