ترغب بنشر مسار تعليمي؟ اضغط هنا

Unprecedented anisotropic metallic state in BaFe2As2 revealed by optical spectroscopy

573   0   0.0 ( 0 )
 نشر من قبل Masamichi Nakajima
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An ordered phase showing remarkable electronic anisotropy in proximity to the superconducting phase is now a hot issue in the field of high-transition-temperature superconductivity. As in the case of copper oxides, superconductivity in iron arsenides competes or coexists with such an ordered phase. Undoped and underdoped iron arsenides have a magnetostructural ordered phase exhibiting stripe-like antiferromagnetic spin order accompanied by an orthorhombic lattice distortion; both the spin order and lattice distortion break the tetragonal symmetry of crystals of these compounds. In this ordered state, anisotropy of in-plane electrical resistivity is anomalous and difficult to attribute simply to the spin order and/or the lattice distortion. Here, we present the anisotropic optical spectra measured on detwinned BaFe2As2 crystals with light polarization parallel to the Fe planes. Pronounced anisotropy is observed in the spectra, persisting up to an unexpectedly high photon energy of about 2 eV. Such anisotropy arises from an anisotropic energy gap opening below and slightly above the onset of the order. Detailed analysis of the optical spectra reveals an unprecedented electronic state in the ordered phase.



قيم البحث

اقرأ أيضاً

162 - K. Matan , R. Morinaga , K. Iida 2009
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2, a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy of 9.8(4) meV. The in-plane spin-wave velocity v_ab and out-of-plane spin-wave velocity v_c measured at 12 meV are 280(150) and 57(7) meV A, respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At T_N=136(1) K, the gap closes, and quasi-elastic scattering is observed above T_N, indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes rodlike, characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
We investigate the quasiparticle dynamics in the prototype heavy fermion CeCoIn$_5$ using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before full establishment of the heavy electron coherence, as the temperature decreases from $sim$120 K ($T^dagger$) to $sim$55 K ($T^*$ ). We reveal that the observed anomalous phonon softening and damping reduction below $T^*$ are directly associated with opening of an indirect hybridization gap. We also discover a distinct collective mode with an energy of $sim$8 meV, which may be the experimental evidence of the predicted unconventional density wave. Our observations provide critical informations for understanding the hybridization dynamics in heavy fermion materials.
115 - A. Akrap , J. J. Tu , L. J. Li 2009
The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T_N = 138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1} (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T_N; for T < T_N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.
We report a polarization-resolved Raman spectroscopy study of the orbital dependence of the quasiparticles properties in the prototypical multi-band Fermi liquid Srtextsubscript{2}RuOtextsubscript{4}. We show that the quasiparticle scattering rate di splays $omega^{2}$ dependence as expected for a Fermi liquid. Besides, we observe a clear polarization-dependence in the energy and temperature dependence of the quasiparticle scattering rate and mass, with the $d_{xz/yz}$ orbital derived quasiparticles showing significantly more robust Fermi liquid properties than the $d_{xy}$ orbital derived ones. The observed orbital dichotomy of the quasiparticles is consistent with the picture of Srtextsubscript{2}RuOtextsubscript{4} as a Hunds metal. Our study establishes Raman scattering as a powerful probe of Fermi liquid properties in correlated metals.
We use broadband ultra-fast pump-probe spectroscopy in the visible range to study the lowest excitations across the Mott-Hubbard gap in the orbitally ordered insulator YVO3. Separating thermal and non-thermal contributions to the optical transients, we show that the total spectral weight of the two lowest peaks is conserved, demonstrating that both excitations correspond to the same multiplet. The pump-induced transfer of spectral weight between the two peaks reveals that the low-energy one is a Hubbard exciton, i.e. a resonance or bound state between a doublon and a holon. Finally, we speculate that the pump-driven spin-disorder can be used to quantify the kinetic energy gain of the excitons in the ferromagnetic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا