ﻻ يوجد ملخص باللغة العربية
The energy spectrum of the cosmic microwave background (CMB) provides a powerful tool for constraining standard and non-standard physics in the primordial Universe. Previous studies mainly highlight spectral distortions (mu-, y- and r-type) created by episodes of early energy release; however, several processes also lead to copious photon production, which requires a different treatment. Here, we carry out a first detailed study for the evolution of distortions caused by photon injection at different energies in the CMB bands. We provide detailed analytical and numerical calculations illustrating the rich phenomenology of the associated distortion signals. We show that photon injection at very high and very low frequencies creates distortions that are similar to those from pure energy release. In the mu-era (z>3x10^5), a positive or negative chemical potential can be formed, depending on the balance between added photon energy and number. At lower redshifts (z<3x10^5), partial information about the photon injection process (i.e., injection time and energy) can still be recovered, with the distortion being found in a partially comptonized state. We briefly discuss current and future constraints on scenarios with photon production. We also argue that more detailed calculations for different scenarios with photon injection may be required to assess in which regimes these can be distinguished from pure energy release processes.
Spectral distortions (SDs) of the cosmic microwave background (CMB) provide a powerful tool for studying particle physics. Here we compute the distortion signals from decaying particles that convert directly into photons at different epochs during co
The standard theory of electromagnetic cascades onto a photon background predicts a quasi-universal shape for the resulting non-thermal photon spectrum. This has been applied to very disparate fields, including non-thermal big bang nucleosynthesis (B
We present a derivation of the Gribov equation for the gluon/photon Greens function D(q). Our derivation is based on the second derivative of the gauge-invariant quantity Tr ln D(q), which we interpret as the gauge-boson `self-loop. By considering th
It is well known that the equation $x(t)=Ax(t)+f(t)$, where $A$ is a square matrix, has a unique bounded solution $x$ for any bounded continuous free term $f$, provided the coefficient $A$ has no eigenvalues on the imaginary axis. This solution can b
We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al., 2009a,b) with new cosmological data obtained during last three years: updated measurements of cosmic micr