ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme gaps between eigenvalues of Wigner matrices

141   0   0.0 ( 0 )
 نشر من قبل Paul Bourgade
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Bourgade




اسأل ChatGPT حول البحث

This paper proves universality of the distribution of the smallest and largest gaps between eigenvalues of generalized Wigner matrices, under some smoothness assumption for the density of the entries. The proof relies on the Erd{H o}s-Schlein-Yau dynamic approach. We exhibit a new observable that satisfies a stochastic advection equation and reduces local relaxation of the Dyson Brownian motion to a maximum principle. This observable also provides a simple and unified proof of universality in the bulk and at the edge, which is quantitative. To illustrate this, we give the first explicit rate of convergence to the Tracy-Widom distribution for generalized Wigner matrices.

قيم البحث

اقرأ أيضاً

We consider the real eigenvalues of an $(N times N)$ real elliptic Ginibre matrix whose entries are correlated through a non-Hermiticity parameter $tau_Nin [0,1]$. In the almost-Hermitian regime where $1-tau_N=Theta(N^{-1})$, we obtain the large-$N$ expansion of the mean and the variance of the number of the real eigenvalues. Furthermore, we derive the limiting empirical distributions of the real eigenvalues, which interpolate the Wigner semicircle law and the uniform distribution, the restriction of the elliptic law on the real axis. Our proofs are based on the skew-orthogonal polynomial representation of the correlation kernel due to Forrester and Nagao.
We extend the random characteristics approach to Wigner matrices whose entries are not required to have a normal distribution. As an application, we give a simple and fully dynamical proof of the weak local semicircle law in the bulk.
93 - Jiaoyang Huang 2019
The eigenvalues for the minors of real symmetric ($beta=1$) and complex Hermitian ($beta=2$) Wigner matrices form the Wigner corner process, which is a multilevel interlacing particle system. In this paper, we study the microscopic scaling limit of t he Wigner corner process both near the spectral edge and in the bulk, and prove they are universal. We show: (i) Near the spectral edge, the corner process exhibit a decoupling phenomenon, as first observed in [24]. Individual extreme particles have Tracy-Widom$_{beta}$ distribution; the spacings between the extremal particles on adjacent levels converge to independent Gamma distributions in a much smaller scale. (ii) In the bulk, the microscopic scaling limit of the Wigner corner process is given by the bead process for general Sine$_beta$ process, as constructed recently in [34].
We prove the Wigner-Dyson-Mehta conjecture at fixed energy in the bulk of the spectrum for generalized symmetric and Hermitian Wigner matrices. Previous results concerning the universality of random matrices either require an averaging in the energy parameter or they hold only for Hermitian matrices if the energy parameter is fixed. We develop a homogenization theory of the Dyson Brownian motion and show that microscopic universality follows from mesoscopic statistics.
We show that in the point process limit of the bulk eigenvalues of $beta$-ensembles of random matrices, the probability of having no eigenvalue in a fixed interval of size $lambda$ is given by [bigl( kappa_{beta}+o(1)bigr)lambda^{gamma_{beta}}expbigg l(-{bet a}{64}lambda^2+biggl({beta}{8}-{1}{4}biggr)lambdabiggr)] as $lambdatoinfty$, where [gamma_{beta}={1}{4}biggl({beta}{2}+{2}{beta}-3biggr)] and $kappa_{beta}$ is an undetermined positive constant. This is a slightly corrected version of a prediction by Dyson [J. Math. Phys. 3 (1962) 157--165]. Our proof uses the new Brownian carousel representation of the limit process, as well as the Cameron--Martin--Girsanov transformation in stochastic calculus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا