ﻻ يوجد ملخص باللغة العربية
If $X$ is a geodesic metric space and $x_1,x_2,x_3in X$, a geodesic triangle $T={x_1,x_2,x_3}$ is the union of the three geodesics $[x_1x_2]$, $[x_2x_3]$ and $[x_3x_1]$ in $X$. The space $X$ is $delta$-hyperbolic (in the Gromov sense) if any side of $T$ is contained in a $delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. In the context of graphs, to remove and to contract an edge of a graph are natural transformations. The main aim in this work is to obtain quantitative information about the distortion of the hyperbolicity constant of the graph $G setminus e$ (respectively, $,G/e,$) obtained from the graph $G$ by deleting (respectively, contracting) an arbitrary edge $e$ from it. This work provides information about the hyperbolicity constant of minor graphs.
If $X$ is a geodesic metric space and $x_{1},x_{2},x_{3} in X$, a geodesic triangle $T={x_{1},x_{2},x_{3}}$ is the union of the three geodesics $[x_{1}x_{2}]$, $[x_{2}x_{3}]$ and $[x_{3}x_{1}]$ in $X$. The space $X$ is $delta$-hyperbolic in the Gromo
The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry.
We give a necessary complex geometric condition for a bounded smooth convex domain in Cn, endowed with the Kobayashi distance, to be Gromov hyperbolic. More precisely, we prove that if a smooth bounded convex domain contains an analytic disk in its b
We obtain explicit and simple conditions which in many cases allow one decide, whether or not a Denjoy domain endowed with the Poincare or quasihyperbolic metric is Gromov hyperbolic. The criteria are based on the Euclidean size of the complement. As
In this paper we study the global geometry of the Kobayashi metric on convex sets. We provide new examples of non-Gromov hyperbolic domains in $mathbb{C}^n$ of many kinds: pseudoconvex and non-pseudocon ewline -vex, bounded and unbounded. Our first