ترغب بنشر مسار تعليمي؟ اضغط هنا

Gromov hyperbolicity and the Kobayashi metric on convex sets

161   0   0.0 ( 0 )
 نشر من قبل Nikolai Nikolov
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the global geometry of the Kobayashi metric on convex sets. We provide new examples of non-Gromov hyperbolic domains in $mathbb{C}^n$ of many kinds: pseudoconvex and non-pseudocon ewline -vex, bounded and unbounded. Our first aim is to prove that if $Omega$ is a bounded weakly linearly convex domain in $mathbb{C}^n,,ngeq 2,$ and $S$ is an affine complex hyperplane intersecting $Omega,$ then the domain $Omegasetminus S$ endowed with the Kobayashi metric is not Gromov hyperbolic (Theorem 1.3). Next we localize this result on Kobayashi hyperbolic convex domains. Namely, we show that Gromov hyperbolicity of every open set of the form $Omegasetminus S,$ where $S$ is relatively closed in $Omega$ and $Omega$ is a convex domain, depends only on that how $S$ looks near the boundary, i.e., whether $S$ near $partialOmega$ (Theorem 1.7). We close the paper with a general remark on Hartogs type domains. The paper extends in an essential way results in [6].



قيم البحث

اقرأ أيضاً

254 - Herve Gaussier 2013
We give a necessary complex geometric condition for a bounded smooth convex domain in Cn, endowed with the Kobayashi distance, to be Gromov hyperbolic. More precisely, we prove that if a smooth bounded convex domain contains an analytic disk in its b oundary, then the domain is not Gromov hyperbolic for the Kobayashi distance. We also provide examples of bounded smooth convex domains that are not strongly pseudoconvex but are Gromov hyperbolic.
We obtain explicit and simple conditions which in many cases allow one decide, whether or not a Denjoy domain endowed with the Poincare or quasihyperbolic metric is Gromov hyperbolic. The criteria are based on the Euclidean size of the complement. As a corollary, the main theorem allows to deduce the non-hyperbolicity of any periodic Denjoy domain.
We compare a Gromov hyperbolic metric with the hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between the Gromov hyperbolic metric and some hyperbolic type metrics. We also obtain several sharp distortion inequalities for the Gromov hyperbolic metric under some families of M{o}bius transformations.
Let $Dsubset mathbb C^n$ be a bounded domain. A pair of distinct boundary points ${p,q}$ of $D$ has the visibility property provided there exist a compact subset $K_{p,q}subset D$ and open neighborhoods $U_p$ of $p$ and $U_q$ of $q$, such that the re al geodesics for the Kobayashi metric of $D$ which join points in $U_p$ and $U_q$ intersect $K_{p,q}$. Every Gromov hyperbolic convex domain enjoys the visibility property for any couple of boundary points. The Goldilocks domains introduced by Bharali and Zimmer and the log-type domains of Liu and Wang also enjoy the visibility property. In this paper we relate the growth of the Kobayashi distance near the boundary with visibility and provide new families of convex domains where that property holds. We use the same methods to provide refinements of localization results for the Kobayashi distance, and give a localized sufficient condition for visibility. We also exploit visibility to study the boundary behavior of biholomorphic maps.
If $X$ is a geodesic metric space and $x_{1},x_{2},x_{3} in X$, a geodesic triangle $T={x_{1},x_{2},x_{3}}$ is the union of the three geodesics $[x_{1}x_{2}]$, $[x_{2}x_{3}]$ and $[x_{3}x_{1}]$ in $X$. The space $X$ is $delta$-hyperbolic in the Gromo v sense if any side of $T$ is contained in a $delta$-neighborhood of the union of the two other sides, for every geodesic triangle $T$ in $X$. If $X$ is hyperbolic, we denote by $delta(X)$ the sharp hyperbolicity constant of $X$, i.e. $delta(X) =inf { deltageq 0:{0.3cm}$ X ${0.2cm}$ $text{is} {0.2cm} delta text{-hyperbolic} }.$ To compute the hyperbolicity constant is a very hard problem. Then it is natural to try to bound the hyperbolycity constant in terms of some parameters of the graph. Denote by $mathcal{G}(n,m)$ the set of graphs $G$ with $n$ vertices and $m$ edges, and such that every edge has length $1$. In this work we estimate $A(n,m):=min{delta(G)mid G in mathcal{G}(n,m) }$ and $B(n,m):=max{delta(G)mid G in mathcal{G}(n,m) }$. In particular, we obtain good bounds for $B(n,m)$, and we compute the precise value of $A(n,m)$ for all values of $n$ and $m$. Besides, we apply these results to random graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا