ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Relaxation in Graphene with self-assembled Cobalt Porphyrin Molecules

209   0   0.0 ( 0 )
 نشر من قبل Siddhartha Omar
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin relaxation mechanism. A self-assembled layer of organic cobalt-porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via non-local spin-valve and Hanle spin precession measurements is reported. For the functionalized (molecular) devices, we observe a slight decrease in the spin relaxation time ({tau}s), which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low quality samples (low mobility), possibly due to dominance of Elliot-Yafet (EY) type spin relaxation mechanisms.



قيم البحث

اقرأ أيضاً

145 - D. Heiss 2008
We report the measurement of extremely slow hole spin relaxation dynamics in small ensembles of self-assembled InGaAs quantum dots. Individual spin orientated holes are optically created in the lowest orbital state of each dot and read out after a de fined storage time using spin memory devices. The resulting luminescence signal exhibits a pronounced polarization memory effect that vanishes for long storage times. The hole spin relaxation dynamics are measured as a function of external magnetic field and lattice temperature. We show that hole spin relaxation can occur over remarkably long timescales in strongly confined quantum dots (up to ~270 us), as predicted by recent theory. Our findings are supported by calculations that reproduce both the observed magnetic field and temperature dependencies. The results suggest that hole spin relaxation in strongly confined quantum dots is due to spin orbit mediated phonon scattering between Zeeman levels, in marked contrast to higher dimensional nanostructures where it is limited by valence band mixing.
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the non-local geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precess ion under a magnetic field $B$ applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B = 0 and B = 2 T shows a 20 % decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin orbit effective fields in the in-plane and out-of-plane directions.
184 - I. M. Vicent , H. Ochoa , 2017
In graphene, out-of-plane (flexural) vibrations and static ripples imposed by the substrate relax the electron spin, intrinsically protected by mirror symmetry. We calculate the relaxation times in different scenarios, accounting for all the possible spin-phonon couplings allowed by the hexagonal symmetry of the lattice. Scattering by flexural phonons imposes the ultimate bound to the spin lifetimes, in the ballpark of hundreds of nano-seconds at room temperature. This estimate and the behavior as a function of the carrier concentration are substantially altered by the presence of tensions or the pinning with the substrate. Static ripples also influence the spin transport in the diffusive regime, dominated by motional narrowing. We find that the Dyakonov-Perel mechanism saturates when the mean free path is comparable to the correlation length of the heights profile. In this regime, the spin-relaxation times are exclusively determined by the geometry of the corrugations. Simple models for typical corrugations lead to lifetimes of the order of tens of micro-seconds.
162 - C. F. Hermanns 2013
Graphene is expected to complement todays Si-based information technology. In particular, magnetic molecules in contact with graphene constitute a tantalizing approach towards organic spin electronics because of the reduced conductivity mismatch at t he interface. In such a system a bit is represented by a single molecular magnetic moment, which must be stabilized against thermal fluctuations. Here, we show in a combined experimental and theoretical study that the moments of paramagnetic Co-octaethylporphyrin (CoOEP) molecules on graphene can be aligned by a remarkable antiferromagnetic coupling to a Ni substrate underneath the graphene. This coupling is mediated via the pi electronic system of graphene, while no covalent bonds between the molecule and the substrate are established.
We compare different methods to measure the anisotropy of the spin-lifetime in graphene. In addition to out-of-plane rotation of the ferromagnetic electrodes and oblique spin precession, we present a Hanle experiment where the electron spins precess around either a magnetic field perpendicular to the graphene plane or around an in-plane field. In the latter case, electrons are subject to both in-plane and out-of-plane spin relaxation. To fit the data, we use a numerical simulation that can calculate precession with anisotropies in the spin-lifetimes under magnetic fields in any direction. Our data show a small, but distinct anisotropy that can be explained by the combined action of isotropic mechanisms, such as relaxation by the contacts and resonant scattering by magnetic impurities, and an anisotropic Rashba spin-orbit based mechanism. We also assess potential sources of error in all three types of experiment and conclude that the in-plane/out-of-plane Hanle method is most reliable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا