ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic coupling of porphyrin molecules through graphene

156   0   0.0 ( 0 )
 نشر من قبل Christian F. Hermanns
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. F. Hermanns




اسأل ChatGPT حول البحث

Graphene is expected to complement todays Si-based information technology. In particular, magnetic molecules in contact with graphene constitute a tantalizing approach towards organic spin electronics because of the reduced conductivity mismatch at the interface. In such a system a bit is represented by a single molecular magnetic moment, which must be stabilized against thermal fluctuations. Here, we show in a combined experimental and theoretical study that the moments of paramagnetic Co-octaethylporphyrin (CoOEP) molecules on graphene can be aligned by a remarkable antiferromagnetic coupling to a Ni substrate underneath the graphene. This coupling is mediated via the pi electronic system of graphene, while no covalent bonds between the molecule and the substrate are established.



قيم البحث

اقرأ أيضاً

The ultimate aspiration of any detection method is to achieve such a level of sensitivity that individual quanta of a measured value can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far bee n beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphenes surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.
We calculate the nonequilibrium conductance through a molecule or a quantum dot in which the occupation of the relevant electronic level is coupled with intensity $lambda$ to a phonon mode, and also to two conducting leads. The system is described by the Anderson-Holstein Hamiltonian. We solve the problem using the Keldysh formalism and the non-crossing approximation (NCA) for both, the electron-electron and the electron-phonon interactions. We obtain a moderate decrease of the Kondo temperature $T_K$ with $lambda$ for fixed renormalized energy of the localized level $tilde{E_d}$. The meaning and value of $tilde{E_d}$ are discussed. The spectral density of localized electrons shows in addition to the Kondo peak of width $2 T_K$, satellites of this peak shifted by multiples of the phonon frequency $ omega_0$. The nonequilibrium conductance as a function of bias voltage $V_b$ at small temperatures, also displays peaks at multiples of $omega_0$ in addition to the central dominant Kondo peak near $V_b=0$.
In this paper, we have done a comparative study of electronic and magnetic properties of iron phthalocyanine (FePc) and cobalt phthalocyanine (CoPc) molecules physisorbed on monolayer of MoS$_2$ and graphene by using density functional theory. Variou s different types of physisorption sites have been considered for both surfaces. Our calculations reveal that the $M$Pc molecules prefer the S-top position on MoS$_2$. However, on graphene, FePc molecule prefers the bridge position while CoPc molecule prefers the top position. The $M$Pc molecules are physisorbed strongly on the MoS$_2$ surface than the graphene ($sim$ 2.5 eV higher physisorption energy). Analysis of magnetic properties indicates the presence of strong spin dipole moment opposite to the spin moment and hence a huge reduction of effective spin moment can be observed. Our calculations of magnetic anisotropy energies using both variational approach and $2^{nd}$ order perturbation approach indicate no significant changes after physisorption. In case of FePc, an out-of-plane easy axis and in case of CoPc, an in-plane easy axis can be seen. Calculations of work function indicate a reduction of MoS$_2$ work function $sim$ 1 eV due to physisorption of $M$Pc molecules while it does not change significantly in case of graphene.
The structural and magnetic properties of Fe octaethylporphyrin (OEP) molecules on Cu(001) have been investigated by means of density functional theory (DFT) methods and X-ray absorption spectroscopy. The molecules have been adsorbed on the bare meta l surface and on an oxygen-covered surface, which shows a $sqrt{2}times2sqrt{2}R45^{circ}$ reconstruction. In order to allow for a direct comparison between magnetic moments obtained from sum-rule analysis and DFT we calculate the dipolar term $7< T_z>$, which is also important in view of the magnetic anisotropy of the molecule. The measured X-ray magnetic circular dichroism shows a strong dependence on the photon incidence angle, which we could relate to a huge value of $7< T_z>$, e.g. on Cu(001) $7< T_z>$ amounts to -2.07,mbo{} for normal incidence leading to a reduction of the effective spin moment $m_s + 7< T_z>$. Calculations have also been performed to study the influence of possible ligands such as Cl and O atoms on the magnetic properties of the molecule and the interaction between molecule and surface, because the experimental spectra display a clear dependence on the ligand, which is used to stabilize the molecule in the gas phase. Both types of ligands weaken the hybridization between surface and porphyrin molecule and change the magnetic spin state of the molecule, but the changes in the X-ray absorption are clearly related to residual Cl ligands.
We report on the fabrication and transport characterization of atomically-precise single molecule devices consisting of a magnetic porphyrin covalently wired by graphene nanoribbon electrodes. The tip of a scanning tunneling microscope was utilized t o contact the end of a GNR-porphyrin-GNR hybrid system and create a molecular bridge between tip and sample for transport measurements. Electrons tunneling through the suspended molecular heterostructure excited the spin multiplet of the magnetic porphyrin. The detachment of certain spin-centers from the surface shifted their spin-carrying orbitals away from an on-surface mixed-valence configuration, recovering its original spin state. The existence of spin-polarized resonances in the free-standing systems and their electrical addressability is the fundamental step for utilization of carbon-based materials as functional molecular spintronics systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا