ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically addressable silicon vacancy-related spin centers in rhombic silicon carbide with high breakdown characteristics and ENDOR evidence of their structure

450   0   0.0 ( 0 )
 نشر من قبل Danil Tolmachev Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discovered uniaxial oriented centers in silicon carbide having unusual performance. Here we demonstrate that the family of silicon-vacancy related centers with $S= 3/2$ in rhombic 15R-SiC crystalline matrix possess unique characteristics such as ODMR contrast and optical spin alignment existing at temperatures up to 250$^circ$C. Thus the concept of optically addressable silicon vacancy related centers with half integer ground spin state is extended to the wide class of SiC rhombic polytypes. The structure of these centers, which is a fundamental problem for quantum applications, has been established using high frequency ENDOR. It has been shown that a family of siliconvacancy related centers is a negatively charged silicon vacancy in the paramagnetic state with the spin $S= 3/2$, V$_textrm{Si}^-$, perturbed by neutral carbon vacancy in non-paramagnetic state, V$_textrm{C}^0$, having no covalent bond with the silicon vacancy and located adjacently to the silicon vacancy on the c crystal axis.



قيم البحث

اقرأ أيضاً

High-frequency pulse electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) were used to clarify the electronic structure of the color centers with an optically induced high-temperature spin-3/2 alignment in hexagonal 4H- , 6H- and rhombic 15R- silicon carbide (SiC) polytypes. The identification is based on resolved ligand hyperfine interactions with carbon and silicon nearest, next nearest and the more distant neighbors and on the determination of the spin state. The ground state and the excited state were demonstrated to have spin S = 3/2. The microscopic model suggested from the EPR and ENDOR results is as follows: a paramagnetic negatively charged silicon vacancy that is noncovalently bonded to a non-paramagnetic neutral carbon vacancy, located on the adjacent site along the SiC symmetry c-axis.
We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-$^{28}$SiC) and find extra terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which are otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity of 87 nT Hz$^{-1/2}$ within a volume of $3 times 10^{-7}$ mm$^{3}$ at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radiofrequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm$^{3}$ the projection noise limit is below 100 fT Hz$^{-1/2}$.
Optically interfaced spins in the solid promise scalable quantum networks. Robust and reliable optical properties have so far been restricted to systems with inversion symmetry. Here, we release this stringent constraint by demonstrating outstanding optical and spin properties of single silicon vacancy centres in silicon carbide. Despite the lack of inversion symmetry, the systems particular wave function symmetry decouples its optical properties from magnetic and electric fields, as well as from local strain. This provides a high-fidelity spin-to-photon interface with exceptionally stable and narrow optical transitions, low inhomogeneous broadening, and a large fraction of resonantly emitted photons. Further, the weak spin-phonon coupling results in electron spin coherence times comparable with nitrogen-vacancy centres in diamond. This allows us to demonstrate coherent hyperfine coupling to single nuclear spins, which can be exploited as qubit memories. Our findings promise quantum network applications using integrated semiconductor-based spin-to-photon interfaces.
Nanodiamonds containing color centers open up many applications in quantum information processing, metrology, and quantum sensing. In particular, silicon vacancy (SiV) centers are prominent candidates as quantum emitters due to their beneficial optic al qualities. Here we characterize nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centers. Our results show that nanodiamond growth can be controlled and optimized for different applications.
Silicon Carbide is a promising host material for spin defect based quantum sensors owing to its commercial availability and established techniques for electrical and optical microfabricated device integration. The negatively charged silicon vacancy i s one of the leading spin defects studied in silicon carbide owing to its near telecom photoemission, high spin number, and nearly temperature independent ground state zero field splitting. We report the realization of nanoTesla shot-noise limited ensemble magnetometry based on optically detected magnetic resonance with the silicon vacancy in 4H silicon carbide. By coarsely optimizing the anneal parameters and minimizing power broadening, we achieved a sensitivity of 3.5 nT/$sqrt{Hz}$. This was accomplished without utilizing complex photonic engineering, control protocols, or applying excitation powers greater than a Watt. This work demonstrates that the silicon vacancy in silicon carbide provides a low-cost and simple approach to quantum sensing of magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا