ترغب بنشر مسار تعليمي؟ اضغط هنا

SCET approach to regularization-scheme dependence of QCD amplitudes

47   0   0.0 ( 0 )
 نشر من قبل Christoph Gnendiger
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the regularization-scheme dependence of scattering amplitudes in massless QCD and find that the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED) are consistent at least up to NNLO in the perturbative expansion if renormalization is done appropriately. Scheme dependence is shown to be deeply linked to the structure of UV and IR singularities. We use jet and soft functions defined in soft-collinear effective theory (SCET) to efficiently extract the relevant anomalous dimensions in the different schemes. This result allows us to construct transition rules for scattering amplitudes between different schemes (CDR, HV, FDH, DRED) up to NNLO in massless QCD. We also show by explicit calculation that the hard, soft and jet functions in SCET are regularization-scheme independent.

قيم البحث

اقرأ أيضاً

We perform a dedicated study of the $q bar{q}$-initiated two-loop electroweak-QCD Drell-Yan scattering amplitude in dimensional regularization schemes for vanishing light quark and lepton masses. For the relative order $alpha$ and $alpha_s$ one-loop Standard Model corrections, details of our comparison to the original literature are given. The infrared pole terms of the mixed two-loop amplitude are governed by a known generalization of the dipole formula and we show explicitly that exactly the same two-loop polarized hard scattering functions are obtained in both the standard t Hooft-Veltman-Breitenlohner-Maison $gamma_5$ scheme and Kreimers anticommuting $gamma_5$ scheme.
The momentum space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In the paper, we make a detailed discussion on the gauge dependence of the pQCD prediction under the MOM scheme. Conventionally, there is renormalization scale ambiguity for the fixed-order pQCD predictions, which assigns an arbitrary range and an arbitrary error for the fixed-order pQCD prediction. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant and hence determines an effective momentum flow of the process, which is independent to the choice of renormalization scale. There is thus no renormalization scale ambiguity in PMC predictions. To concentrate our attention on the MOM gauge dependence, we first apply the PMC to deal with the pQCD series. We adopt the Higgs boson decay width, $Gamma(Hto gg)$, up to five-loop QCD contributions as an example to show how the gauge dependence behaves before and after applying the PMC. It is found that the Higgs decay width $Gamma (Hto gg)$ depends very weakly on the choices of the MOM schemes, being consistent with the renormalization group invariance. It is found that the gauge dependence of $Gamma(Hto gg)$ under the $rm{MOMgg}$ scheme is less than $pm1%$, which is the smallest gauge dependence among all the mentioned MOM schemes.
A novel, non-power, expansion of QCD quantities replacing the standard perturbative expansion in powers of the renormalized couplant a has recently been introduced and examined by two of us. Being obtained by analytic continuation in the Borel plane, the new expansion functions W_n(a) share the basic analyticity properties with the expanded quantity. In this note we investigate the renormalization scale dependence of finite order sums of this new expansion for the phenomenologically interesting case of the tau-lepton decay rate.
Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, M_h, at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups pre sented the two-loop QCD momentum-dependent corrections to Mh [1,2], using a hybrid on-shell--DRbar scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in [2] of an inconsistency in [1] is incorrect. We furthermore compare consistently the results for M_h obtained with the top-quark mass renormalized on-shell and DRbar. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.
We suggest a new approach for the automatic and fully numerical evaluation of one-loop scattering amplitudes in perturbative quantum field theory. We use suitably formulated dispersion relations to perform the calculation as a convolution of tree-lev el amplitudes. This allows to take advantage of the iterative numerical algorithms for the evaluation of leading order matrix elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا