ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

148   0   0.0 ( 0 )
 نشر من قبل Giuseppe Pica
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighbouring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on sub-nanometer precision in donor placement and is robust against noise in the control fields. We use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.



قيم البحث

اقرأ أيضاً

Spins of donor electrons and nuclei in silicon are promising quantum bit (qubit) candidates which combine long coherence times with the fabrication finesse of the silicon nanotechnology industry. We outline a potentially scalable spin qubit architect ure where donor nuclear and electron spins are coupled to spins of electrons in quantum dots and discuss requirements for donor placement aligned to quantum dots by single ion implantation.
Exchange coupling is a key ingredient for spin-based quantum technologies since it can be used to entangle spin qubits and create logical spin qubits. However, the influence of the electronic valley degree of freedom in silicon on exchange interactio ns is presently the subject of important open questions. Here we investigate the influence of valleys on exchange in a coupled donor/quantum dot system, a basic building block of recently proposed schemes for robust quantum information processing. Using a scanning tunneling microscope tip to position the quantum dot with sub-nm precision, we find a near monotonic exchange characteristic where lattice-aperiodic modulations associated with valley degrees of freedom comprise less than 2~% of exchange. From this we conclude that intravalley tunneling processes that preserve the donors $pm x$ and $pm y$ valley index are filtered out of the interaction with the $pm z$ valley quantum dot, and that the $pm x$ and $pm y$ intervalley processes where the electron valley index changes are weak. Complemented by tight-binding calculations of exchange versus donor depth, the demonstrated electrostatic tunability of donor/QD exchange can be used to compensate the remaining intravalley $pm z$ oscillations to realise uniform interactions in an array of highly coherent donor spins.
Practical quantum computers require the construction of a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a physical platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and allows hundreds of nanometers inter-qubit distances, therefore facilitating fabrication using current technology. All qubit operations are performed via electrical means on the electron-nuclear spin states of a phosphorus donor. Single-qubit gates use low power electric drive at microwave frequencies, while fast two-qubit gates exploit electric dipole-dipole interactions. Microwave resonators allow for millimeter-distance entanglement and interfacing with photonic links. Sweet spots protect the qubits from charge noise up to second order, implying that all operations can be performed with error rates below quantum error correction thresholds, even without any active noise cancellation technique.
We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D^0, D^-, D_2^+ and D_2^0 centers. The impact of different levels of approximation is discuss ed. The most accurate instances -- for which we provide quantitative results -- are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations -- in particular, for a donor pair, we discuss the single orbital LCAO method, the Huckel approximation and the Hubbard model. Finally we discuss the connection between these results and recent experiments on few dopant devices.
Impurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-do main applications, the spins of group-VI $^{125}$Te$^+$ donors implanted into natural Si at depths of 20 and 300 nm. We examine spin activation yield, relaxation ($T_1$) and coherence times ($T_2$) and show how a zero-field 3.5 GHz `clock transition extends spin coherence times to over 1 ms and narrows the inhomogeneous spin linewidth to 0.6 MHz. We show that surface band-bending can be used to ionise Te to spin-active Te$^+$ state, and that coherence times of near-surface donors are comparable to the bulk. We demonstrate initialization protocols using optical illumination to generate excess Te$^+$. These results show that $^{125}$Te$^+$ is a promising system for silicon-based spin qubits and ensemble quantum memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا