ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of one and two donors in Silicon

121   0   0.0 ( 0 )
 نشر من قبل Maria Jose Calderon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D^0, D^-, D_2^+ and D_2^0 centers. The impact of different levels of approximation is discussed. The most accurate instances -- for which we provide quantitative results -- are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations -- in particular, for a donor pair, we discuss the single orbital LCAO method, the Huckel approximation and the Hubbard model. Finally we discuss the connection between these results and recent experiments on few dopant devices.



قيم البحث

اقرأ أيضاً

Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achiev e controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16${pm}1$ nm. By utilizing an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.
We present a complete theoretical treatment of Stark effects in doped silicon, whose predictions are supported by experimental measurements. A multi-valley effective mass theory, dealing non-perturbatively with valley-orbit interactions induced by a donor-dependent central cell potential, allows us to obtain a very reliable picture of the donor wave function within a relatively simple framework. Variational optimization of the 1s donor binding energies calculated with a new trial wave function, in a pseudopotential with two fitting parameters, allows an accurate match of the experimentally determined donor energy levels, while the correct limiting behavior for the electronic density, both close to and far from each impurity nucleus, is captured by fitting the measured contact hyperfine coupling between the donor nuclear and electron spin. We go on to include an external uniform electric field in order to model Stark physics: With no extra ad hoc parameters, variational minimization of the complete donor ground energy allows a quantitative description of the field-induced reduction of electronic density at each impurity nucleus. Detailed comparisons with experimental values for the shifts of the contact hyperfine coupling reveal very close agreement for all the donors measured (P, As, Sb and Bi). Finally, we estimate field ionization thresholds for the donor ground states, thus setting upper limits to the gate manipulation times for single qubit operations in Kane-like architectures: the Si:Bi system is shown to allow for A gates as fast as around 10 MHz.
We present atomistic simulations of the D0 to D- charging energies of a gated donor in silicon as a function of applied fields and donor depths and find good agreement with experimental measure- ments. A self-consistent field large-scale tight-bindin g method is used to compute the D- binding energies with a domain of over 1.4 million atoms, taking into account the full bandstructure of the host, applied fields, and interfaces. An applied field pulls the loosely bound D- electron towards the interface and reduces the charging energy significantly below the bulk values. This enables formation of bound excited D-states in these gated donors, in contrast to bulk donors. A detailed quantitative comparison of the charging energies with transport spectroscopy measurements with multiple samples of arsenic donors in ultra-scaled FinFETs validates the model results and provides physical insights. We also report measured D-data showing for the first time the presence of bound D-excited states under applied fields.
Adiabatic shuttling of single impurity bound electrons to gate induced surface states in semiconductors has attracted much attention in recent times, mostly in the context of solid-state quantum computer architecture. A recent transport spectroscopy experiment for the first time was able to probe the Stark shifted spectrum of a single donor in silicon buried close to a gate. Here we present the full theoretical model involving large-scale quantum mechanical simulations that was used to compute the Stark shifted donor states in order to interpret the experimental data. Use of atomistic tight-binding technique on a domain of over a million atoms helped not only to incorporate the full band structure of the host, but also to treat realistic device geometries and donor models, and to use a large enough basis set to capture any number of donor states. The method yields a quantitative description of the symmetry transition that the donor electron undergoes from a 3D Coulomb confined state to a 2D surface state as the electric field is ramped up adiabatically. In the intermediate field regime, the electron resides in a superposition between the states of the atomic donor potential and that of the quantum dot like states at the surface. In addition to determining the effect of field and donor depth on the electronic structure, the model also provides a basis to distinguish between a phosphorus and an arsenic donor based on their Stark signature. The method also captures valley-orbit splitting in both the donor well and the interface well, a quantity critical to silicon qubits. The work concludes with a detailed analysis of the effects of screening on the donor spectrum.
Donor spin in silicon have achieved record values of coherence times and single-qubit gate fidelities. The next stage of development involves demonstrating high-fidelity two-qubit logic gates, where the most natural coupling is the exchange interacti on. To aid the efficient design of scalable donor-based quantum processors, we model the two-electron wave function using a full configuration interaction method within a multi-valley effective mass theory. We exploit the high computational efficiency of our code to investigate the exchange interaction, valley population, and electron densities for two phosphorus donors in a wide range of lattice positions, orientations, and as a function of applied electric fields. The outcomes are visualized with interactive images where donor positions can be swept while watching the valley and orbital components evolve accordingly. Our results provide a physically intuitive and quantitatively accurate understanding of the placement and tuning criteria necessary to achieve high-fidelity two-qubit gates with donors in silicon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا