ﻻ يوجد ملخص باللغة العربية
Geo-Synchronous orbits are appealing for Solar or astrophysical observatories because they permit continuous data downlink at high rates. The radiation environment in these orbits presents unique challenges, however. This paper describes both the characteristics of the radiation environment in Geo-Synchronous orbit and the mechanisms by which this radiation generates backgrounds in photon detectors. Shielding considerations are described, and a preliminary shielding design for the proposed Wide-Field InfraRed Survey Telescope observatory is presented as a reference for future space telescope concept studies that consider a Geo-Synchronous orbit.
LOFT (Large Observatory For x-ray Timing) is one of the ESA M3 missions selected within the Cosmic Vision program in 2011 to carry out an assessment phase study and compete for a launch opportunity in 2022-2024. The phase-A studies of all M3 missions
Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellence performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted t
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) is a high-contrast imager and integral field spectrograph that will enable the study of exoplanets and circumstellar disks at visible wavelengths. Ground-based high-contra
The Wide-field Infrared Transient Explorer (WINTER) is a 1x1 degree infrared survey telescope under development at MIT and Caltech, and slated for commissioning at Palomar Observatory in 2021. WINTER is a seeing-limited infrared time-domain survey an