ترغب بنشر مسار تعليمي؟ اضغط هنا

On the singlet projector and the monodromy relation for psu(2, 2|4) spin chains and reduction to subsectors

35   0   0.0 ( 0 )
 نشر من قبل Takuya Nishimura
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As a step toward uncovering the relation between the weak and the strong coupling regimes of the $mathcal{N}=4$ super Yang-Mills theory beyond the specral level, we have developed in a previous paper [arXiv:1410.8533] a novel group theoretic interpretation of the Wick contraction of the fields, which allowed us to compute a much more general class of three-point functions in the SU(2) sector, as in the case of strong coupling [arXiv:1312.3727], directly in terms of the determinant representation of the partial domain wall partition funciton. Furthermore, we derived a non-trivial identity for the three point functions with monodromy operators inserted, being the discrete counterpart of the global monodromy condition which played such a crucial role in the computation at strong coupling. In this companion paper, we shall extend our study to the entire ${rm psu}(2,2|4)$ sector and obtain several important generalizations. They include in particular (i) the manifestly conformally covariant construction, from the basic principle, of the singlet-projection operator for performing the Wick contraction and (ii) the derivation of the monodromy relation for the case of the so-called harmonic R-matrix, as well as for the usual fundamental R-matrtix. The former case, which is new and has features rather different from the latter, is expected to have important applications. We also describe how the form of the monodromy relation is modified as ${rm psu}(2,2|4)$ is reduced to its subsectors.

قيم البحث

اقرأ أيضاً

We discuss reductions of general N=1 four dimensional gauge theories on S^2. The effective two dimensional theory one obtains depends on the details of the coupling of the theory to background fields, which can be translated to a choice of R-symmetry . We argue that, for special choices of R-symmetry, the resulting two dimensional theory has a natural interpretation as an N=(0,2) gauge theory. As an application of our general observations, we discuss reductions of N=1 and N=2 dualities and argue that they imply certain two dimensional dualities.
We discuss the problem of constructing differential operators for the generalized IBP reduction algorithms at the 2-loop level. A deeply optimized software allows one to efficiently construct such operators for the first non-degenerate 2-loop cases. The most efficient approach is found to be via the so-called partial operators that are much simpler than the complete ones, and that affect the power of only one of the polynomials in the product.
In this article, we shall develop and formulate two novel viewpoints and properties concerning the three-point functions at weak coupling in the SU(2) sector of the N = 4 super Yang-Mills theory. One is a double spin-chain formulation of the spin-cha in and the associated new interpretation of the operation of Wick contraction. It will be regarded as a skew symmetric pairing which acts as a projection onto a singlet in the entire SO(4) sector, instead of an inner product in the spin-chain Hilbert space. This formalism allows us to study a class of three-point functions of operators built upon more general spin-chain vacua than the special configuration discussed so far in the literature. Furthermore, this new viewpoint has the signicant advantage over the conventional method: In the usual tailoring operation, the Wick contraction produces inner products between off-shell Bethe states, which cannot be in general converted into simple expressions. In contrast, our procedure directly produces the so-called partial domain wall partition functions, which can be expressed as determinants. Using this property, we derive simple determinantal representation for a broader class of three-point functions. The second new property uncovered in this work is the non-trivial identity satisfied by the three-point functions with monodromy operators inserted. Generically this relation connects three-point functions of different operators and can be regarded as a kind of Schwinger-Dyson equation. In particular, this identity reduces in the semiclassical limit to the triviality of the product of local monodromies around the vertex operators, which played a crucial role in providing all important global information on the three-point function in the strong coupling regime. This structure may provide a key to the understanding of the notion of integrability beyond the spectral level.
We consider effective theories with massive fields that have spins larger than or equal to two. We conjecture a universal cutoff scale on any such theory that depends on the lightest mass of such fields. This cutoff corresponds to the mass scale of a n infinite tower of states, signalling the breakdown of the effective theory. The cutoff can be understood as the Weak Gravity Conjecture applied to the Stuckelberg gauge field in the mass term of the high spin fields. A strong version of our conjecture applies even if the graviton itself is massive, so to massive gravity. We provide further evidence for the conjecture from string theory.
The presence of a massless spin-2 field in an effective field theory results in a $t$-channel pole in the scattering amplitudes that precludes the application of standard positivity bounds. Despite this, recent arguments based on compactification to three dimensions have suggested that positivity bounds may be applied to the $t$-channel pole subtracted amplitude. If correct this would have deep implications for UV physics and the Weak Gravity Conjecture. Within the context of a simple renormalizable field theory coupled to gravity we find that applying these arguments would constrain the low-energy coupling constants in a way which is incompatible with their actual values. This contradiction persists on deforming the theory. Further enforcing the $t$-channel pole subtracted positivity bounds on such generic renormalizable effective theories coupled to gravity would imply new physics at a scale parametrically smaller than expected, with far reaching implications. This suggests that generically the standard positivity bounds are inapplicable with gravity and we highlight a number of issues that impinge on the formulation of a three-dimensional amplitude which simultaneously satisfies the required properties of analyticity, positivity and crossing symmetry. We conjecture instead a modified bound that ought to be satisfied independently of the precise details of the high energy completion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا