ﻻ يوجد ملخص باللغة العربية
We discuss the problem of constructing differential operators for the generalized IBP reduction algorithms at the 2-loop level. A deeply optimized software allows one to efficiently construct such operators for the first non-degenerate 2-loop cases. The most efficient approach is found to be via the so-called partial operators that are much simpler than the complete ones, and that affect the power of only one of the polynomials in the product.
Empirical evidence reveals existence of partial D-operators for the generalized IBP (BT) reduction algorithms that are, counterintuitively, much simpler and much easier to find than the complete D-operators from the foundational Bernstein theorem, al
We present an efficient method to shorten the analytic integration-by-parts (IBP) reduction coefficients of multi-loop Feynman integrals. For our approach, we develop an improved version of Leinartas multivariate partial fraction algorithm, and provi
In this manuscript, which is to appear in the proceedings of the conference MathemAmplitude 2019 in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integra
We present the fully integrated form of the two-loop four-gluon amplitude in $mathcal{N} = 2$ supersymmetric quantum chromodynamics with gauge group SU$(N_c)$ and with $N_f$ massless supersymmetric quarks (hypermultiplets) in the fundamental represen
We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an ar