ترغب بنشر مسار تعليمي؟ اضغط هنا

Preprocessing Among the Infalling Galaxy Population of EDisCS Clusters

300   0   0.0 ( 0 )
 نشر من قبل Dennis Just
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dennis W. Just




اسأل ChatGPT حول البحث

We present results from a low-resolution spectroscopic survey for 21 galaxy clusters at $0.4 < z < 0.8$ selected from the ESO Distant Cluster Survey. We measured spectra using the low-dispersion prism in IMACS on the Magellan Baade telescope and calculate redshifts with an accuracy of $sigma_z = 0.007$. We find 1763 galaxies that are brighter than $R = 22.9$ in the large-scale cluster environs. We identify the galaxies expected to be accreted by the clusters as they evolve to $z = 0$ using spherical infall models and find that $sim30%$ to $sim70%$ of the $z = 0$ cluster population lies outside the virial radius at $z sim 0.6$. For analogous clusters at $z = 0$, we calculate that the ratio of galaxies that have fallen into the clusters since $z sim 0.6$ to those that were already in the core at that redshift is typically between $sim0.3$ and $1.5$. This wide range of ratios is due to intrinsic scatter and is not a function of velocity dispersion, so a variety of infall histories is to be expected for clusters with current velocity dispersions of $300 lesssimsigmalesssim 1200$ km s$^{-1}$. Within the infall regions of $z sim 0.6$ clusters, we find a larger red fraction of galaxies than in the field and greater clustering among red galaxies than blue. We interpret these findings as evidence of preprocessing, where galaxies in denser local environments have their star formation rates affected prior to their aggregation into massive clusters, although the possibility of backsplash galaxies complicates the interpretation.

قيم البحث

اقرأ أيضاً

We analyse a sample of twelve galaxy clusters, from the Kapteyn IAC WEAVE INT Cluster Survey (KIWICS) looking for dwarf galaxy candidates. By using photometric data in the $r$ and $g$ bands from the Wide Field Camera (WFC) at the 2.5-m Isaac Newton t elescope (INT), we select a sample of bright dwarf galaxies (M$_r$ $leq$ -15.5 mag) in each cluster and analyse their spatial distribution, stellar colour, and as well as their Sersic index and effective radius. We quantify the dwarf fraction inside the $R_{200}$ radius of each cluster, which ranges from $sim$ 0.7 to $sim$ 0.9. Additionally, when comparing the fraction in the inner region with the outermost region of the clusters, we find that the fraction of dwarfs tends to increase going to the outer regions. We also study the clustercentric distance distribution of dwarf and giant galaxies (M$_r$ $<$ -19.0 mag), and in half of the clusters of our sample, the dwarfs are distributed in a statistically different way as the giants, with the giant galaxies being closer to the cluster centre. We analyse the stellar colour of the dwarf candidates and quantify the fraction of blue dwarfs inside the $R_{200}$ radius, which is found to be less than $sim$ 0.4, but increases with distance from the cluster centre. Regarding the structural parameters, the Sersic index for the dwarfs we visually classify as early type dwarfs tends to be higher in the inner region of the cluster. These results indicate the role that the cluster environment plays in shaping the observational properties of low-mass halos.
We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142. Normal mixture modelling revealed in A2142 several infalling galaxy groups and subclusters. The projected phase space diagram was used to anal yse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxies in the centre of the main cluster at the clustercentric distances $0.5~h^{-1}Mpc$ have older stellar populations (with the median age of $10 - 11$~Gyrs) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly in the infall region at the clustercentric distances $D_{mathrm{c}} approx 1.8~h^{-1}Mpc$, where the median age of stellar populations of galaxies is about $2$~Gyrs. Galaxies in A2142 have higher stellar masses, lower star formation rates, and redder colours than galaxies in other rich groups. The total mass in infalling groups and subclusters is $M approx 6times10^{14}h^{-1}M_odot$, approximately half of the mass of the cluster, sufficient for the mass growth of the cluster from redshift $z = 0.5$ (half-mass epoch) to the present. The cluster A2142 may have formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.
We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (fb) to investigate the clustercentr ic radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r200 to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (Bgc), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The fb is found not to correlate with Bgc; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy fb is approximately constant with clustercentric radius except for the inner cluster core region where fb decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction, indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.
A catalogue of galaxy clusters was obtained in an area of 414 sq deg up to a redshift $zsim0.8$ from the Data Release 3 of the Kilo-Degree Survey (KiDS-DR3), using the Adaptive Matched Identifier of Clustered Objects (AMICO) algorithm. The catalogue and the calibration of the richness-mass relation were presented in two companion papers. Here we describe the selection of the cluster central galaxy and the classification of blue and red cluster members, and analyze the main cluster properties, such as the red/blue fraction, cluster mass, brightness and stellar mass of the central galaxy, and their dependence on redshift and cluster richness. We use the Illustris-TNG simulation, which represents the state-of-the-art cosmological simulation of galaxy formation, as a benchmark for the interpretation of the results. A good agreement with simulations is found at low redshifts ($z le 0.4$), while at higher redshifts the simulations indicate a lower fraction of blue galaxies than what found in the KiDS-AMICO catalogue: we argue that this may be due to an underestimate of star-forming galaxies in the simulations. The selection of clusters with a larger magnitude difference between the two brightest central galaxies, which may indicate a more relaxed cluster dynamical status, improves the agreement between the observed and simulated cluster mass and stellar mass of the central galaxy. We also find that at a given cluster mass the stellar mass of blue central galaxies is lower than that of the red ones.
Massive galaxies are thought to form in two phases: an initial, early collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark matter haloes. The globular cluster sys tems of such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (red) clusters, while more metal-poor (blue) clusters are brought in by the later accretion of less massive satellites. This formation process is thought to lead the creation of the multimodal optical colour distributions seen in the globular cluster systems of massive galaxies. Here we report HST/ACS observations of the massive relic galaxy NGC 1277 and its globular clusters, a nearby unevolved example of a high redshift red nugget. The g-z cluster colour distribution shows that the globular cluster system of the galaxy is unimodal and uniquely red. This is in strong contrast to normal galaxies of similar and larger stellar mass, whose cluster systems always exhibit (and are generally dominated by) blue clusters. We argue that the globular cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse and use analytic merger trees to show that the total stellar mass accretion is likely less than ~ 10 %. These results confirm that NGC 1277 is a genuine relic galaxy and show that the blue, metal-poor globular clusters constitute an accreted population in present day massive galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا