ﻻ يوجد ملخص باللغة العربية
We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142. Normal mixture modelling revealed in A2142 several infalling galaxy groups and subclusters. The projected phase space diagram was used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxies in the centre of the main cluster at the clustercentric distances $0.5~h^{-1}Mpc$ have older stellar populations (with the median age of $10 - 11$~Gyrs) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly in the infall region at the clustercentric distances $D_{mathrm{c}} approx 1.8~h^{-1}Mpc$, where the median age of stellar populations of galaxies is about $2$~Gyrs. Galaxies in A2142 have higher stellar masses, lower star formation rates, and redder colours than galaxies in other rich groups. The total mass in infalling groups and subclusters is $M approx 6times10^{14}h^{-1}M_odot$, approximately half of the mass of the cluster, sufficient for the mass growth of the cluster from redshift $z = 0.5$ (half-mass epoch) to the present. The cluster A2142 may have formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.
We study the dynamical state and properties of galaxies and groups in the supercluster SClA2142 that has a collapsing core, to understand its possible formation and evolution. We find the substructure of galaxy groups using normal mixture modelling.
We analyse the gas content evolution of infalling haloes in cluster environments from THE THREE HUNDRED project, a collection of 324 numerically modelled galaxy clusters. The haloes in our sample were selected within $5R_{200}$ of the main cluster ha
Structure formation in the current Universe operates through the accretion of group-scale systems onto massive clusters. The detection and study of such accreting systems is crucial to understand the build-up of the most massive virialized structures
We explore the clustering of galaxy groups in the Galaxy and Mass Assembly (GAMA) survey to investigate the dependence of group bias and profile on separation scale and group mass. Due to the inherent uncertainty in estimating the group selection fun
We study ultra-diffuse galaxies (UDGs) in zoom in cosmological simulations, seeking the origin of UDGs in the field versus galaxy groups. We find that while field UDGs arise from dwarfs in a characteristic mass range by multiple episodes of supernova