ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear and magic ponderomotive spectroscopy

40   0   0.0 ( 0 )
 نشر من قبل Kaitlin Moore
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In ponderomotive spectroscopy an amplitude-modulated optical standing wave is employed to probe Rydberg-atom transitions, utilizing a ponderomotive rather than a dipole-field interaction. Here, we engage nonlinearities in the modulation to drive dipole-forbidden transitions up to the fifth order. We reach transition frequencies approaching the sub-THz regime. We also demonstrate magic-wavelength conditions, which result in symmetric spectral lines with a Fourier-limited feature at the line center. Applicability to precision measurement is discussed.

قيم البحث

اقرأ أيضاً

We investigate theoretically and experimentally fluctuations of high spin (F>1/2) beyond the linear response regime and demonstrate dramatic modifications of the spin noise spectra in the high power density probe field. Several effects related to an interplay of high spin and perturbation are predicted theoretically and revealed experimentally, including strong sensitivity of the spin noise spectra to the mutual orientation of the probe polarization plane and magnetic field direction, appearance of high harmonics of the Larmor frequency in the spin noise and the fine structure of the Larmor peaks. We demonstrate the ability of the spin-noise spectroscopy to access the nonlinear effects related to the renormalization of the spin states by strong electromagnetic fields.
Improvements in both theory and frequency metrology of few-electron systems such as hydrogen and helium have enabled increasingly sensitive tests of quantum electrodynamics (QED), as well as ever more accurate determinations of fundamental constants and the size of the nucleus. At the same time advances in cooling and trapping of neutral atoms have revolutionized the development of increasingly accurate atomic clocks. Here, we combine these fields to reach the highest precision on an optical tranistion in the helium atom to date by employing a Bose-Einstein condensate confined in a magic wavelength optical dipole trap. The measured transition accurately connects the ortho- and parastates of helium and constitutes a stringent test of QED theory. In addition we test polarizability calculations and ultracold scattering properties of the helium atom. Finally, our measurement probes the size of the nucleus at a level exceeding the projected accuracy of muonic helium measurements currently being performed in the context of the proton radius puzzle.
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectru m, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
We demonstrate three-dimensional trapping of individual Rydberg atoms in holographic optical bottle beam traps. Starting with cold, ground-state $^{87}$Rb atoms held in standard optical tweezers, we excite them to $nS_{1/2}$, $nP_{1/2}$, or $nD_{3/2} $ Rydberg states and transfer them to a hollow trap at 850 nm. For principal quantum numbers $60 leqslant n leqslant 90$, the measured trapping time coincides with the Rydberg state lifetime in a 300~K environment. We show that these traps are compatible with quantum information and simulation tasks by performing single qubit microwave Rabi flopping, as well as by measuring the interaction-induced, coherent spin-exchange dynamics between two trapped Rydberg atoms separated by 40 $mu$m. These results will find applications in the realization of high-fidelity quantum simulations and quantum logic operations with Rydberg atoms.
The electronic properties of heterostructures of atomically-thin van der Waals (vdW) crystals can be modified substantially by Moire superlattice potentials arising from an interlayer twist between crystals. Moire-tuning of the band structure has led to the recent discovery of superconductivity and correlated insulating phases in twisted bilayer graphene (TBLG) near the so-called magic angle of $sim$1.1{deg}, with a phase diagram reminiscent of high T$_c$ superconductors. However, lack of detailed understanding of the electronic spectrum and the atomic-scale influence of the Moire pattern has so far precluded a coherent theoretical understanding of the correlated states. Here, we directly map the atomic-scale structural and electronic properties of TBLG near the magic angle using scanning tunneling microscopy and spectroscopy (STM/STS). We observe two distinct van Hove singularities (vHs) in the LDOS which decrease in separation monotonically through 1.1{deg} with the bandwidth (t) of each vHs minimized near the magic angle. When doped near half Moire band filling, the conduction vHs shifts to the Fermi level and an additional correlation-induced gap splits the vHs with a maximum size of 7.5 meV. We also find that three-fold (C$_3$) rotational symmetry of the LDOS is broken in doped TBLG with a maximum symmetry breaking observed for states near the Fermi level, suggestive of nematic electronic interactions. The main features of our doping and angle dependent spectroscopy are captured by a tight-binding model with on-site (U) and nearest neighbor Coulomb interactions. We find that the ratio U/t is of order unity, indicating that electron correlations are significant in magic angle TBLG. Rather than a simple maximization of the DOS, superconductivity arises in TBLG at angles where the ratio U/t is largest, suggesting a pairing mechanism based on electron-electron interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا