ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Calculation in Service of Constraining the Rate of FU Orionis Outburst Events from Photometric Monitoring Surveys

26   0   0.0 ( 0 )
 نشر من قبل Lynne Hillenbrand
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An enigmatic and rare type of young stellar object is the FU Orionis class. The members are interpreted as outbursting, that is, currently in a state of enhanced accretion by several orders of magnitude relative to the more modest disk-to-star accretion rates measured in typical T Tauri stars. They are key to our understanding of the history of stellar mass assembly and pre-main sequence evolution, as well as critical to consider in the chemical and physical evolution of the circumstellar environment -- where planets form. A common supposition is that *all* T Tauri stars undergo repeated such outbursts, more frequently in their earlier evolutionary stages when the disks are more massive, so as to build up the requisite amount of stellar mass on the required time scale. However, the actual data supporting this traditional picture of episodically enhanced disk accretion are limited, and the observational properties of the known sample of FU Ori objects quite diverse. To improve our understanding of these rare objects, we outline the logic for meaningfully constraining the rate of FU Ori outbursts and present numbers to guide parameter choices in the analysis of time domain surveys.

قيم البحث

اقرأ أيضاً

166 - Adam A. Miller 2010
We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHa 188-G4 and HBC 722). Prior to this outburst, LkHa 188-G4 was classified as a classical T Tauri star on the basis of its optic al emission-line spectrum superposed on a K8-type photosphere, and its photometric variability. The mid-infrared spectral index of LkHa 188-G4 indicates a Class II-type object. LkHa 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in Aug. 2009, before a subsequent more abrupt rise of > 3 mag on a time scale of ~2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (i) an increase in brightness by > 4 mag, (ii) a bright optical/near-infrared reflection nebula appeared, (iii) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Halpha which is characterized by a P Cygni profile, (iv) near-infrared spectra resemble those of late K--M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_2O, and (v) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHa 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified classical T Tauri star LkHa 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.
During their formation phase stars gain most of their mass in violent episodic accretion events, such as observed in FU Orionis (FUor) and EXor stars. V346 Normae is a well-studied FUor that underwent a strong outburst beginning in $sim1980$. Here, w e report photometric and spectroscopic observations which show that the visual/near-infrared brightness has decreased dramatically between the 1990s and 2010 (${Delta}Rapprox10.9^{rm m}$, ${Delta}Japprox7.8^{rm m}$, ${Delta}Kapprox5.8^{rm m}$). The spectral properties of this fading event cannot be explained with variable extinction alone, but indicate a drop in accretion rate by 2-3 orders of magnitude, marking the first time that a member of the FUor class has been observed to switch to a very low accretion phase. Remarkably, in the last few years (2011-2015) V346 Nor has brightened again at all near-infrared wavelengths, indicating the onset of a new outburst event. The observed behaviour might be consistent with the clustered luminosity bursts that have been predicted by recent gravitational instability and fragmentation models for the early stages of protostellar evolution. Given V346 Nors unique characteristics (concerning outburst duration, repetition frequency, and spectroscopic diagnostics), our results also highlight the need for revisiting the FUor/EXor classification scheme.
We present the results of high-resolution (R $ge$ 30,000) optical and near-infrared spectroscopic monitoring observations of a FU Orionis-type object, V960 Mon, which underwent an outburst in 2014 November. We have monitored this object with the Bohy unsan Optical Echelle Spectrograph (BOES) and the Immersion GRating INfrared Spectrograph (IGRINS) since 2014 December. Various features produced by a wind, disk, and outflow/jet were detected. The wind features varied over time and continually weakened after the outburst. We detected double-peaked line profiles in the optical and near-infrared, and the line widths tend to decrease with increasing wavelength, indicative of Keplerian disk rotation. The disk features in the optical and near-infrared spectra fit well with G-type and K-type stellar spectra convolved with a kernel to account for the maximum projected disk rotation velocity of about 40.3$pm$3.8 km s$^{-1}$ and 36.3$pm$3.9 km s$^{-1}$, respectively. We also report the detection of [S II] and H$_{2}$ emission lines, which are jet/outflow tracers and rarely found in FUors.
Among the low-mass pre-main sequence stars, a small group called FU Orionis-type objects (FUors) are notable for undergoing powerful accretion outbursts. V1057 Cyg, a classical example of an FUor, went into outburst around 1969-1970, after which it f aded rapidly, making it the fastest fading FUor known. Around 1995, a more rapid increase in fading occurred. Since that time, strong photometric modulations have been present. We present nearly 10 years of source monitoring at PiszkestetH{o} Observatory, complemented with optical/near-infrared photometry and spectroscopy from the Nordic Optical Telescope, Bohyunsan Optical Astronomy Observatory, Transiting Exoplanet Survey Satellite, and the Stratospheric Observatory for Infrared Astronomy. Our light curves show continuation of significant quasi-periodic variability in brightness over the past decade. Our spectroscopic observations show strong wind features, shell features, and forbidden emission lines. All of these spectral lines vary with time. We also report the first detection of [S II], [N II], and [O III] lines in the star.
We present new results from optical photometric and spectroscopic observations of the eruptive pre-main sequence star V2493 Cyg (HBC 722). The object has continued to undergo significant brightness variations over the past few months and is an ideal target for follow-up observations. We carried out CCD BVRI photometric observations in the field of V2493 Cyg (Gulf of Mexico) from August 1994 to April 2012, i.e. at the pre-outburst states and during the phases of the outburst. We acquired high, medium, and low resolution spectroscopy of V2493 Cyg during the outburst. To study the pre-outburst variability of the target and construct its historical light curve, we searched for archival observations in photographic plate collections. Both CCD and photographic observations were analyzed using 15 comparison stars in the field of V2493 Cyg. The pre-outburst photographic and CCD photometric observations of V2493 Cyg show low-amplitude light variations typical of T Tauri stars. The recent photometric data show a slow light decrease from October 2010 to June 2011 followed by an increase in brightness that continued until early 2012. The spectral observations of V2493 Cyg are typical of FU Orionis stars absorption spectra with strong P Cyg profiles of H alpha and Na I D lines. On the basis of photometric monitoring performed over the past two years, the spectral properties at the maximal light, as well as the shape of long-term light curves, we confirm that the observed outburst of V2493 Cyg is of FU Orionis type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا