ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution spectroscopic monitoring observations of FU Orionis-type object, V960 Mon

118   0   0.0 ( 0 )
 نشر من قبل Sunkyung Park
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of high-resolution (R $ge$ 30,000) optical and near-infrared spectroscopic monitoring observations of a FU Orionis-type object, V960 Mon, which underwent an outburst in 2014 November. We have monitored this object with the Bohyunsan Optical Echelle Spectrograph (BOES) and the Immersion GRating INfrared Spectrograph (IGRINS) since 2014 December. Various features produced by a wind, disk, and outflow/jet were detected. The wind features varied over time and continually weakened after the outburst. We detected double-peaked line profiles in the optical and near-infrared, and the line widths tend to decrease with increasing wavelength, indicative of Keplerian disk rotation. The disk features in the optical and near-infrared spectra fit well with G-type and K-type stellar spectra convolved with a kernel to account for the maximum projected disk rotation velocity of about 40.3$pm$3.8 km s$^{-1}$ and 36.3$pm$3.9 km s$^{-1}$, respectively. We also report the detection of [S II] and H$_{2}$ emission lines, which are jet/outflow tracers and rarely found in FUors.


قيم البحث

اقرأ أيضاً

We present ALMA observations of 12CO, 13CO, and C18O J=2--1 lines and the 230 GHz continuum for the FU Ori-type object (FUor) V900 Mon (d~1.5 kpc), for which the accretion burst was triggered between 1953 and 2009. We identified CO emission associate d with a molecular bipolar outflow extending up to a ~10^4 au scale and a rotating molecular envelope extending over >10^4 au. The interaction with the hot energetic FUor wind, which was observed using optical spectroscopy, appears limited to a region within ~400 au of the star. The envelope mass and the collimation of the extended CO outflow suggest that the progenitor of this FUor is a low-mass Class I young stellar object (YSO). These parameters for V900 Mon, another FUor, and a few FUor-like stars are consistent with the idea that FUor outbursts are associated with normal YSOs. The continuum emission is marginally resolved in our observations with a 0.2x0.15 (~300x225 au) beam, and a Gaussian model provides a deconvolved FWHM of ~90 au. The emission is presumably associated with a dusty circumstellar disk, plus a possible contribution from a wind or a wind cavity close to the star. The warm compact nature of the disk continuum emission could be explained with viscous heating of the disk, while gravitational fragmentation in the outer disk and/or a combination of grain growth and their inward drift may also contribute to its compact nature.
FUors are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX $^{12}$CO and $^{13}$CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets. We locate the source of the CO emission and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.
170 - O. Feher , A. Kospal , P. Abraham 2020
The earliest phases of star formation are characterised by intense mass accretion from the circumstellar disk to the central star. One group of young stellar objects, the FU Orionis-type stars exhibit accretion rate peaks accompanied by bright erupti ons. The occurrence of these outbursts might solve the luminosity problem of protostars, play a key role in accumulating the final star mass, and have a significant effect on the parameters of the envelope and the disk. In the framework of the Structured Accretion Disks ERC project, we are conducting a systematic investigation of these sources with millimeter interferometry to examine whether they represent normal young stars in exceptional times or they are unusual objects. Our results show that FU Orionis-type stars can be similar to both Class I and Class II systems and may be in a special evolutionary phase between the two classes with their infall-driven episodic eruptions being the main driving force of the transition.
Aims. Accretion and luminosity bursts triggered by three distinct mechanisms: the magnetorotational instability in the inner disk regions, clump infall in gravitationally fragmented disks and close encounters with an intruder star, were studied to de termine the disk kinematic characteristics that can help to distinguish between these burst mechanisms. Methods. Numerical hydrodynamics simulations in the thin-disk limit were employed to model the bursts in disk environments that are expected for each burst mechanism. Results. We found that the circumstellar disks featuring accretion bursts can bear kinematic features that are distinct for different burst mechanisms, which can be useful when identifying the burst origin. The disks in the stellar encounter and clump-infall models are characterized by tens of percent deviations from the Keplerian rotation, whie the disks in the MRI models are characterized only a few percent deviation, which is mostly caused by the gravitational instability that fuels the MRI bursts. Velocity channel maps also show distinct kinks and wiggles, which are caused by gas disk flows that are peculiar to each considered burst mechanism. The deviations of velocity channels in the burst-hosting disks from a symmetric pattern typical of Keplerian disks are strongest for the clump-infall and collision models, and carry individual features that may be useful for the identification of the corresponding burst mechanism. The considered burst mechanisms produce a variety of light curves with the burst amplitudes varying in the Delta m=2.5-3.7 limits, except for the clump-infall model where Delta m can reach 5.4, although the derived numbers may be affected by a small sample and boundary conditions. Conclusions. Burst triggering mechanisms are associated with distinct kinematic features in the burst-hosting disks that may be used for their identification. Abridged.
Among the low-mass pre-main sequence stars, a small group called FU Orionis-type objects (FUors) are notable for undergoing powerful accretion outbursts. V1057 Cyg, a classical example of an FUor, went into outburst around 1969-1970, after which it f aded rapidly, making it the fastest fading FUor known. Around 1995, a more rapid increase in fading occurred. Since that time, strong photometric modulations have been present. We present nearly 10 years of source monitoring at PiszkestetH{o} Observatory, complemented with optical/near-infrared photometry and spectroscopy from the Nordic Optical Telescope, Bohyunsan Optical Astronomy Observatory, Transiting Exoplanet Survey Satellite, and the Stratospheric Observatory for Infrared Astronomy. Our light curves show continuation of significant quasi-periodic variability in brightness over the past decade. Our spectroscopic observations show strong wind features, shell features, and forbidden emission lines. All of these spectral lines vary with time. We also report the first detection of [S II], [N II], and [O III] lines in the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا