ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice correlation of Hubbard excitons in a Mott insulator Sr2IrO4 and reconstruction of their hopping dynamics via time-dependent coherence analysis of the Bragg diffraction

76   0   0.0 ( 0 )
 نشر من قبل Yuelin Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In correlated oxides the coupling of quasiparticles to other degrees of freedom such as spin and lattice plays critical roles in the emergence of symmetry-breaking quantum ordered states such as high temperature superconductivity. We report a strong lattice coupling of photon induced Hubbard excitonic quasiparticles in spin-orbital coupling Mott insulator Sr2IrO4. Combining time-resolved optical spectroscopy techniques, we further reconstructed spatiotemporal map of the diffusion of quasiparticles via time-dependent coherence analysis of the x-ray Bragg diffraction peak. Due to the unique electronic configuration of the exciton, the strong lattice correlation is unexpected but extends the similarity between Sr2IrO4 and cuprates under highly non-equilibrium conditions. The coherence analysis method we developed may have important implications for characterizing the structure and carrier dynamics in a wider group of oxide heterostructures.

قيم البحث

اقرأ أيضاً

325 - J. Porras , J. Bertinshaw , H. Liu 2018
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We present a comprehensive study of the static magnetism and low-energy pseudospin dynamics in the archetypal spin-orbit Mott insulator Sr2IrO4. We find that in order to understand even basic magnetization measurements, a formerly overlooked in-plane anisotropy is fundamental. In addition to magnetometry, we use neutron diffraction, inelastic neutron scattering and resonant elastic and inelastic x-ray scattering to identify and quantify the interactions that determine the global symmetry of the system and govern the linear responses of pseudospins to external magnetic felds and their low-energy dynamics. We find that a pseudospin-only Hamiltonian is insufficient for an accurate description of the magnetism in Sr2IrO4 and that pseudospin-lattice coupling is essential. This finding should be generally applicable to other pseudospin systems with sizable orbital moments sensitive to anisotropic crystalline environments.
High quality epitaxial thin films of Jeff=1/2 Mott insulator Sr2IrO4 with increasing in-plane tensile strain have been grown on top of SrTiO3(001) substrates. Increasing the in-plane tensile strain up to ~0.3% was observed to drop the c/a tetragonali ty by 1.2 %. X-ray absorption spectroscopy detected a strong reduction of the linear dichroism upon increasing in-plane tensile strain towards a reduced anisotropy in the local electronic structure. While the most relaxed thin film shows a consistent dependence with previously reported single crystal bulk measurements, electrical transport reveals a charge gap reduction from 200 meV down to 50 meV for the thinnest and most epitaxy-distorted film. We argue that the reduced tetragonality plays a major role in the change of the electronic structure, which is reflected in the change of the transport properties. Our work opens the possibility for exploiting epitaxial strain as a tool for both structural and functional manipulation of spin-orbit Mott systems.
Coherent diffraction imaging (CDI) on Bragg reflections is a promising technique for the study of three-dimensional (3D) composition and strain fields in nanostructures, which can be recovered directly from the coherent diffraction data recorded on s ingle objects. In this article we report results obtained for single homogeneous and heterogeneous nanowires with a diameter smaller than 100 nm, for which we used CDI to retrieve information about deformation and faults existing in these wires. The article also discusses the influence of stacking faults, which can create artefacts during the reconstruction of the nanowire shape and deformation.
Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physic s of the Mott-insulating phase of the system. Exact diagonalizations of the so-derived models on small clusters are performed, in order to assess the quality of the effective low-energy theory in the spin-liquid regime. We show that six-spin interactions on the elementary loop of the honeycomb lattice are the dominant sub-leading effective couplings. A minimal spin model is shown to reproduce most of the energetic properties of the Hubbard model on the honeycomb lattice in its spin-liquid phase. Surprisingly, a more elaborate effective low-energy spin model obtained by a systematic graph expansion rather disagrees beyond a certain point with the numerical results for the Hubbard model at intermediate couplings.
We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hunds exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized by Hunds coupling. These unconventional Hund excitons correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. The photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا