ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced Gravity Model of trade: reconciling macroeconomic and network models

75   0   0.0 ( 0 )
 نشر من قبل Diego Garlaschelli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of the International Trade Network (ITN), whose nodes and links represent world countries and their trade relations respectively, affects key economic processes worldwide, including globalization, economic integration, industrial production, and the propagation of shocks and instabilities. Characterizing the ITN via a simple yet accurate model is an open problem. The traditional Gravity Model (GM) successfully reproduces the volume of trade between connected countries, using macroeconomic properties such as GDP, geographic distance, and possibly other factors. However, it predicts a network with complete or homogeneous topology, thus failing to reproduce the highly heterogeneous structure of the ITN. On the other hand, recent maximum-entropy network models successfully reproduce the complex topology of the ITN, but provide no information about trade volumes. Here we integrate these two currently incompatible approaches via the introduction of an Enhanced Gravity Model (EGM) of trade. The EGM is the simplest model combining the GM with the network approach within a maximum-entropy framework. Via a unified and principled mechanism that is transparent enough to be generalized to any economic network, the EGM provides a new econometric framework wherein trade probabilities and trade volumes can be separately controlled by any combination of dyadic and country-specific macroeconomic variables. The model successfully reproduces both the global topology and the local link weights of the ITN, parsimoniously reconciling the conflicting approaches. It also indicates that the probability that any two countries trade a certain volume should follow a geometric or exponential distribution with an additional point mass at zero volume.

قيم البحث

اقرأ أيضاً

157 - Liyang Tang 2020
This paper selects the NARX neural network as the method through literature review, and constructs specific NARX neural networks under application scenarios involving macroeconomic forecasting, national goal setting and global competitiveness assessm ent. Through case studies on China, US and Eurozone, this study explores how those limited & partial exogenous inputs or abundant & comprehensive exogenous inputs, a small set of most relevant exogenous inputs or a large set of exogenous inputs covering all major aspects of the macro economy, whole area related exogenous inputs or both whole area and subdivision area related exogenous inputs specifically affect the forecasting performance of NARX neural networks for specific macroeconomic indicators or indices. Through the case study on Russia this paper explores how the limited & most relevant exogenous inputs set or the abundant & comprehensive exogenous inputs set specifically influences the prediction performance of those specific NARX neural networks for national goal setting. Finally, comparative studies on the application of NARX neural networks for the forecasts of Global Competitiveness Indices (GCIs) of various economies are conducted, in order to explore whether the specific NARX neural network trained on the basis of the GCI related data of some economies can make sufficiently accurate predictions about GCIs of other economies, and whether the specific NARX neural network trained on the basis of the data of some type of economies can give more accurate predictions about GCIs of the same type of economies than those of different type of economies. Based on all of the above successful application, this paper provides policy recommendations on applying fully trained NARX neural networks that are assessed as qualified to assist or even replace the deductive and inductive abilities of the human brain in a variety of appropriate tasks.
We show how the Shannon entropy function can be used as a basis to set up complexity measures weighting the economic efficiency of countries and the specialization of products beyond bare diversification. This entropy function guarantees the existenc e of a fixed point which is rapidly reached by an iterative scheme converging to our self-consistent measures. Our approach naturally allows to decompose into inter-sectorial and intra-sectorial contributions the country competitivity measure if products are partitioned into larger categories. Besides outlining the technical features and advantages of the method, we describe a wide range of results arising from the analysis of the obtained rankings and we benchmark these observations against those established with other economical parameters. These comparisons allow to partition countries and products into various main typologies, with well-revealed characterizing features. Our methods have wide applicability to general problems of ranking in bipartite networks.
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.
The increasing integration of world economies, which organize in complex multilayer networks of interactions, is one of the critical factors for the global propagation of economic crises. We adopt the network science approach to quantify shock propag ation on the global trade-investment multiplex network. To this aim, we propose a model that couples a Susceptible-Infected-Recovered epidemic spreading dynamics, describing how economic distress propagates between connected countries, with an internal contagion mechanism, describing the spreading of such economic distress within a given country. At the local level, we find that the interplay between trade and financial interactions influences the vulnerabilities of countries to shocks. At the large scale, we find a simple linear relation between the relative magnitude of a shock in a country and its global impact on the whole economic system, albeit the strength of internal contagion is country-dependent and the intercountry propagation dynamics is non-linear. Interestingly, this systemic impact can be predicted on the basis of intra-layer and inter-layer scale factors that we name network multipliers, that are independent of the magnitude of the initial shock. Our model sets-up a quantitative framework to stress-test the robustness of individual countries and of the world economy to propagating crashes.
Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا