ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Graph Analysis in the GMine System

80   0   0.0 ( 0 )
 نشر من قبل Jose Rodrigues Jr
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current applications have produced graphs on the order of hundreds of thousands of nodes and millions of edges. To take advantage of such graphs, one must be able to find patterns, outliers and communities. These tasks are better performed in an interactive environment, where human expertise can guide the process. For large graphs, though, there are some challenges: the excessive processing requirements are prohibitive, and drawing hundred-thousand nodes results in cluttered images hard to comprehend. To cope with these problems, we propose an innovative framework suited for any kind of tree-like graph visual design. GMine integrates (a) a representation for graphs organized as hierarchies of partitions - the concepts of SuperGraph and Graph-Tree; and (b) a graph summarization methodology - CEPS. Our graph representation deals with the problem of tracing the connection aspects of a graph hierarchy with sub linear complexity, allowing one to grasp the neighborhood of a single node or of a group of nodes in a single click. As a proof of concept, the visual environment of GMine is instantiated as a system in which large graphs can be investigated globally and locally.


قيم البحث

اقرأ أيضاً

Recently, many systems for graph analysis have been developed to address the growing needs of both industry and academia to study complex graphs. Insight into the practical uses of graph analysis will allow future developments of such systems to opti mize for real-world usage, instead of targeting single use cases or hypothetical workloads. This insight may be derived from surveys on the applications of graph analysis. However, existing surveys are limited in the variety of application domains, datasets, and/or graph analysis techniques they study. In this work we present and apply a systematic method for identifying practical use cases of graph analysis. We identify commonly used graph features and analysis methods and use our findings to construct a taxonomy of graph analysis applications. We conclude that practical use cases of graph analysis cover a diverse set of graph features and analysis methods. Furthermore, most applications combine multiple features and methods. Our findings motivate further development of graph analysis systems to support a broader set of applications and to facilitate the combination of multiple analysis methods in an (interactive) workflow.
Information diffusion in social networks facilitates rapid and large-scale propagation of content. However, spontaneous diffusion behavior could also lead to the cascading of sensitive information, which is neglected in prior arts. In this paper, we present the first look into adaptive diffusion of sensitive information, which we aim to prevent from widely spreading without incurring much information loss. We undertake the investigation in networks with partially known topology, meaning that some users ability of forwarding information is unknown. Formulating the problem into a bandit model, we propose BLAG (Bandit on Large Action set Graph), which adaptively diffuses sensitive information towards users with weak forwarding ability that is learnt from tentative transmissions and corresponding feedbacks. BLAG enjoys a low complexity of O(n), and is provably more efficient in the sense of half regret bound compared with prior learning method. Experiments on synthetic and three real datasets further demonstrate the superiority of BLAG in terms of adaptive diffusion of sensitive information over several baselines, with at least 40 percent less information loss, at least 10 times of learning efficiency given limited learning rounds and significantly postponed cascading of sensitive information.
In a networked system, functionality can be seriously endangered when nodes are infected, due to internal random failures or a contagious virus that develops into an epidemic. Given a snapshot of the network representing the nodes states (infected or healthy), infection analysis refers to distinguishing an epidemic from random failures and gathering information for effective countermeasure design. This analysis is challenging due to irregular network structure, heterogeneous epidemic spreading, and noisy observations. This paper treats a network snapshot as a graph signal, and develops effective approaches for infection analysis based on graph signal processing. For the macro (network-level) analysis aiming to distinguish an epidemic from random failures, 1) multiple detection metrics are defined based on the graph Fourier transform (GFT) and neighborhood characteristics of the graph signal; 2) a new class of graph wavelets, distance-based graph wavelets (DBGWs), are developed; and 3) a machine learning-based framework is designed employing either the GFT spectrum or the graph wavelet coefficients as features for infection analysis. DBGWs also enable the micro (node-level) infection analysis, through which the performance of epidemic countermeasures can be improved. Extensive simulations are conducted to demonstrate the effectiveness of all the proposed algorithms in various network settings.
Measuring graph clustering quality remains an open problem. To address it, we introduce quality measures based on comparisons of intra- and inter-cluster densities, an accompanying statistical test of the significance of their differences and a step- by-step routine for clustering quality assessment. Our null hypothesis does not rely on any generative model for the graph, unlike modularity which uses the configuration model as a null model. Our measures are shown to meet the axioms of a good clustering quality function, unlike the very commonly used modularity measure. They also have an intuitive graph-theoretic interpretation, a formal statistical interpretation and can be easily tested for significance. Our work is centered on the idea that well clustered graphs will display a significantly larger intra-cluster density than inter-cluster density. We develop tests to validate the existence of such a cluster structure. We empirically explore the behavior of our measures under a number of stress test scenarios and compare their behavior to the commonly used modularity and conductance measures. Empirical stress test results confirm that our measures compare very favorably to the established ones. In particular, they are shown to be more responsive to graph structure and less sensitive to sample size and breakdowns during numerical implementation and less sensitive to uncertainty in connectivity. These features are especially important in the context of larger data sets or when the data may contain errors in the connectivity patterns.
84 - Ming-Xia Li 2014
Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا