ﻻ يوجد ملخص باللغة العربية
In a networked system, functionality can be seriously endangered when nodes are infected, due to internal random failures or a contagious virus that develops into an epidemic. Given a snapshot of the network representing the nodes states (infected or healthy), infection analysis refers to distinguishing an epidemic from random failures and gathering information for effective countermeasure design. This analysis is challenging due to irregular network structure, heterogeneous epidemic spreading, and noisy observations. This paper treats a network snapshot as a graph signal, and develops effective approaches for infection analysis based on graph signal processing. For the macro (network-level) analysis aiming to distinguish an epidemic from random failures, 1) multiple detection metrics are defined based on the graph Fourier transform (GFT) and neighborhood characteristics of the graph signal; 2) a new class of graph wavelets, distance-based graph wavelets (DBGWs), are developed; and 3) a machine learning-based framework is designed employing either the GFT spectrum or the graph wavelet coefficients as features for infection analysis. DBGWs also enable the micro (node-level) infection analysis, through which the performance of epidemic countermeasures can be improved. Extensive simulations are conducted to demonstrate the effectiveness of all the proposed algorithms in various network settings.
Signal processing over single-layer graphs has become a mainstream tool owing to its power in revealing obscure underlying structures within data signals. For generally, many real-life datasets and systems are characterized by more complex interactio
One of the new scientific ways of understanding discourse dynamics is analyzing the public data of social networks. This researchs aim is Post-structuralist Discourse Analysis (PDA) of Covid-19 phenomenon (inspired by Laclau and Mouffes Discourse The
Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices
Finding the infection sources in a network when we only know the network topology and infected nodes, but not the rates of infection, is a challenging combinatorial problem, and it is even more difficult in practice where the underlying infection spr
Zeroth-order (ZO) optimization is a subset of gradient-free optimization that emerges in many signal processing and machine learning applications. It is used for solving optimization problems similarly to gradient-based methods. However, it does not