ترغب بنشر مسار تعليمي؟ اضغط هنا

A Practical Oblivious Map Data Structure with Secure Deletion and History Independence

132   0   0.0 ( 0 )
 نشر من قبل Daniel Roche
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new oblivious RAM that supports variable-sized storage blocks (vORAM), which is the first ORAM to allow varying block sizes without trivial padding. We also present a new history-independent data structure (a HIRB tree) that can be stored within a vORAM. Together, this construction provides an efficient and practical oblivious data structure (ODS) for a key/value map, and goes further to provide an additional privacy guarantee as compared to prior ODS maps: even upon client compromise, deleted data and the history of old operations remain hidden to the attacker. We implement and measure the performance of our system using Amazon Web Services, and the single-operation time for a realistic database (up to $2^{18}$ entries) is less than 1 second. This represents a 100x speed-up compared to the current best oblivious map data structure (which provides neither secure deletion nor history independence) by Wang et al. (CCS 14).



قيم البحث

اقرأ أيضاً

Oblivious RAM (ORAM) protocols are powerful techniques that hide a clients data as well as access patterns from untrusted service providers. We present an oblivious cloud storage system, ObliviSync, that specifically targets one of the most widely-us ed personal cloud storage paradigms: synchronization and backup services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. This setting provides a unique opportunity because the above privacy properties can be achieved with a simpler form of ORAM called write-only ORAM, which allows for dramatically increased efficiency compared to related work. Our solution is asymptotically optimal and practically efficient, with a small constant overhead of approximately 4x compared with non-private file storage, depending only on the total data size and parameters chosen according to the usage rate, and not on the number or size of individual files. Our construction also offers protection against timing-channel attacks, which has not been previously considered in ORAM protocols. We built and evaluated a full implementation of ObliviSync that supports multiple simultaneous read-only clients and a single concurrent read/write client whose edits automatically and seamlessly propagate to the readers. We show that our system functions under high work loads, with realistic file size distributions, and with small additional latency (as compared to a baseline encrypted file system) when paired with Dropbox as the synchronization service.
154 - Benny Fuhry 2017
Software-based approaches for search over encrypted data are still either challenged by lack of proper, low-leakage encryption or slow performance. Existing hardware-based approaches do not scale well due to hardware limitations and software designs that are not specifically tailored to the hardware architecture, and are rarely well analyzed for their security (e.g., the impact of side channels). Additionally, existing hardware-based solutions often have a large code footprint in the trusted environment susceptible to software compromises. In this paper we present HardIDX: a hardware-based approach, leveraging Intels SGX, for search over encrypted data. It implements only the security critical core, i.e., the search functionality, in the trusted environment and resorts to untrusted software for the remainder. HardIDX is deployable as a highly performant encrypted database index: it is logarithmic in the size of the index and searches are performed within a few milliseconds rather than seconds. We formally model and prove the security of our scheme showing that its leakage is equivalent to the best known searchable encryption schemes. Our implementation has a very small code and memory footprint yet still scales to virtually unlimited search index sizes, i.e., size is limited only by the general - non-secure - hardware resources.
225 - Hyun Bin Lee 2021
Users can improve the security of remote communications by using Trusted Execution Environments (TEEs) to protect against direct introspection and tampering of sensitive data. This can even be done with applications coded in high-level languages with complex programming stacks such as R, Python, and Ruby. However, this creates a trade-off between programming convenience versus the risk of attacks using microarchitectural side channels. In this paper, we argue that it is possible to address this problem for important applications by instrumenting a complex programming environment (like R) to produce a Data-Oblivious Transcript (DOT) that is explicitly designed to support computation that excludes side channels. Such a transcript is then evaluated on a Trusted Execution Environment (TEE) containing the sensitive data using a small trusted computing base called the Data-Oblivious Virtual Environment (DOVE). To motivate the problem, we demonstrate a number of subtle side-channel vulnerabilities in the R language. We then provide an illustrative design and implementation of DOVE for R, creating the first side-channel resistant R programming stack. We demonstrate that the two-phase architecture provided by DOT generation and DOVE evaluation can provide practical support for complex programming languages with usable performance and high security assurances against side channels.
We present a new and practical framework for security verification of secure architectures. Specifically, we break the verification task into external verification and internal verification. External verification considers the external protocols, i.e . interactions between users, compute servers, network entities, etc. Meanwhile, internal verification considers the interactions between hardware and software components within each server. This verification framework is general-purpose and can be applied to a stand-alone server, or a large-scale distributed system. We evaluate our verification method on the CloudMonatt and HyperWall architectures as examples.
80 - Guang Ping He 2018
Quantum oblivious transfer (QOT) is an essential cryptographic primitive. But unconditionally secure QOT is known to be impossible. Here we propose a practical QOT protocol, which is perfectly secure against dishonest sender without relying on any te chnological assumption. Meanwhile, it is also secure against dishonest receiver in the absence of long-term quantum memory and complicated collective measurements. The protocol is extremely feasible, as it can be implemented using currently available Mach-Zehnder interferometer, and no quantum memory, collective measurements nor entanglement are needed for honest participants. More importantly, comparing with other practical QOT schemes, our protocol has an unbeatable efficiency since it requires the transmission of a single photon only.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا