ﻻ يوجد ملخص باللغة العربية
Quantum oblivious transfer (QOT) is an essential cryptographic primitive. But unconditionally secure QOT is known to be impossible. Here we propose a practical QOT protocol, which is perfectly secure against dishonest sender without relying on any technological assumption. Meanwhile, it is also secure against dishonest receiver in the absence of long-term quantum memory and complicated collective measurements. The protocol is extremely feasible, as it can be implemented using currently available Mach-Zehnder interferometer, and no quantum memory, collective measurements nor entanglement are needed for honest participants. More importantly, comparing with other practical QOT schemes, our protocol has an unbeatable efficiency since it requires the transmission of a single photon only.
Due to the commonly known impossibility results, information theoretic security is considered impossible for oblivious transfer (OT) in both the classical and the quantum world. In this paper, we proposed a weak version of the all-or-nothing OT. In o
Due to the commonly known impossibility results, unconditional security for oblivious transfer is seen as impossible even in the quantum world. In this paper, we try to overcome these impossibility results by proposing a protocol which is asymptotica
Oblivious transfer, a central functionality in modern cryptography, allows a party to send two one-bit messages to another who can choose one of them to read, remaining ignorant about the other, whereas the sender does not learn the receivers choice.
Oblivious transfer is a fundamental cryptographic primitive in which Bob transfers one of two bits to Alice in such a way that Bob cannot know which of the two bits Alice has learned. We present an optimal security bound for quantum oblivious transfe
Oblivious transfer is a cryptographic primitive where Alice has two bits and Bob wishes to learn some function of them. Ideally, Alice should not learn Bobs desired function choice and Bob should not learn any more than what is logically implied by t