ترغب بنشر مسار تعليمي؟ اضغط هنا

A Review of Annual Review of Astronomy and Astrophysics, Volume 52, 2014

277   0   0.0 ( 0 )
 نشر من قبل Arikkala Rao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. R. Rao




اسأل ChatGPT حول البحث

A review of the Annual Review of Astronomy and Astrophysics Volume 52, 2014 (Ed. S.M. Faber, Ewine van Dishoeck, and John Kormendy) is given, with a perspective of understanding the current trends in Astronomy and Astrophysics. The impact of high volume data, high connectivity, and fast computations is clearly seen in the various research areas discussed in this volume. This has provided unprecedented development in the understanding of various astrophysical phenomena. At the same time, some negative trends like commodification of science, ignoring dissenting views are also evident.

قيم البحث

اقرأ أيضاً

Hundreds of thousands of astronomy education activities exist, but their discoverability and quality is highly variable. The web platform for astronomy education activities, astroEDU, presented in this paper tries to solve these issues. Using the fam iliar peer-review workflow of scientific publications, astroEDU is improving standards of quality, visibility and accessibility, while providing credibility to these astronomy education activities. astroEDU targets activity guides, tutorials and other educational activities in the area of astronomy education, prepared by teachers, educators and other education specialists. Each of the astroEDU activities is peer-reviewed by an educator as well as an astronomer to ensure a high standard in terms of scientific content and educational value. All reviewed materials are then stored in a free open online database, enabling broad distribution in a range of different formats. In this way astroEDU is not another web repository for educational resources but a mechanism for peer-reviewing and publishing high-quality astronomy education activities in an open access way. This paper will provide an account on the implementation and first findings of the use of astroEDU.
Report of the experimental activities in Hall A at Thomas Jefferson National Accelerator Facility during 2013.
The brightest class of low mass X-ray binary source: the Z-track sources are reviewed specifically with regard to the nature of the three distinct states of the sources. A physical model is presented for the Cygnus X-2 sub-group in which increasing m ass accretion rate takes place on the Normal Branch resulting in high neutron star temperature and radiation pressure responsible for inner disk disruption and launching of jets. The Flaring Branch consists of unstable nuclear burning on the neutron star. It is shown that the Sco X-1 like sub-group is dominated by almost non-stop flaring consisting of both unstable burning and increase of Mdot, causing higher neutron star temperatures. Finally, results of Atoll source surveys are presented and a model for the nature of the Banana and Island states in these sources is proposed. Motion along the Banana state is caused by variation of Mdot. Measurements of the high energy cut-off of the Comptonized emission E_CO provide the electron temperature T_e of the Comptonizing ADC; above a luminosity of 2x10^37 erg/s E_CO is a few keV and T_e equals the neutron star temperature. At lower luminosities, the cut-off energy rises towards 100 keV showing heating of the corona by an unknown process. This spectral hardening is the cause of the Island state of Atoll sources. The models for Z-track and Atoll sources thus constitute a unified model for low mass X-ray binary sources.
72 - I. Caballero , J. Wilms 2012
Accreting X-ray pulsars are among the most luminous objects in the X-ray sky. In highly magnetized neutron stars (B~10^12 G), the flow of matter is dominated by the strong magnetic field. The general properties of accreting X-ray binaries are present ed, focusing on the spectral characteristics of the systems. The use of cyclotron lines as a tool to directly measure a neutron stars magnetic field and to test the theory of accretion are discussed. We conclude with the current and future prospects for accreting X-ray binary studies.
Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments in experimental technologies have allowed laboratory studies to take on a new role as some questions which previously could only be studied theoretically can now be addressed directly in the lab. With this in mind we, the members of the AAS Working Group on Laboratory Astrophysics, have prepared this State of the Profession Position Paper on the laboratory astrophysics infrastructure needed to ensure the advancement of astronomy and astrophysics in the next decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا