ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolutionary origins of hierarchy

44   0   0.0 ( 0 )
 نشر من قبل Henok Mengistu S
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hierarchical organization -- the recursive composition of sub-modules -- is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force--the cost of connections--promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

قيم البحث

اقرأ أيضاً

The complexity of cellular automata is traditionally measured by their computational capacity. However, it is difficult to choose a challenging set of computational tasks suitable for the parallel nature of such systems. We study the ability of autom ata to emulate one another, and we use this notion to define such a set of naturally emerging tasks. We present the results for elementary cellular automata, although the core ideas can be extended to other computational systems. We compute a graph showing which elementary cellular automata can be emulated by which and show that certain chaotic automata are the only ones that cannot emulate any automata non-trivially. Finally, we use the emulation notion to suggest a novel definition of chaos that we believe is suitable for discrete computational systems. We believe our work can help design parallel computational systems that are Turing-complete and also computationally efficient.
We introduce a novel evolutionary formulation of the problem of finding a maximum independent set of a graph. The new formulation is based on the relationship that exists between a graphs independence number and its acyclic orientations. It views suc h orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The resulting heuristic has been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and has been found to be competitive when compared to several of the other heuristics that have also been tested on those graphs.
We create a novel optimisation technique inspired by natural ecosystems, where the optimisation works at two levels: a first optimisation, migration of genes which are distributed in a peer-to-peer network, operating continuously in time; this proces s feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. We consider from the domain of computer science distributed evolutionary computing, with the relevant theory from the domain of theoretical biology, including the fields of evolutionary and ecological theory, the topological structure of ecosystems, and evolutionary processes within distributed environments. We then define ecosystem- oriented distributed evolutionary computing, imbibed with the properties of self-organisation, scalability and sustainability from natural ecosystems, including a novel form of distributed evolu- tionary computing. Finally, we conclude with a discussion of the apparent compromises resulting from the hybrid model created, such as the network topology.
In January 2019, DeepMind revealed AlphaStar to the world-the first artificial intelligence (AI) system to beat a professional player at the game of StarCraft II-representing a milestone in the progress of AI. AlphaStar draws on many areas of AI rese arch, including deep learning, reinforcement learning, game theory, and evolutionary computation (EC). In this paper we analyze AlphaStar primarily through the lens of EC, presenting a new look at the system and relating it to many concepts in the field. We highlight some of its most interesting aspects-the use of Lamarckian evolution, competitive co-evolution, and quality diversity. In doing so, we hope to provide a bridge between the wider EC community and one of the most significant AI systems developed in recent times.
80 - Noe Casas 2015
Coevolution is a powerful tool in evolutionary computing that mitigates some of its endemic problems, namely stagnation in local optima and lack of convergence in high dimensionality problems. Since its inception in 1990, there are multiple articles that have contributed greatly to the development and improvement of the coevolutionary techniques. In this report we review some of those landmark articles dwelving in the techniques they propose and how they fit to conform robust evolutionary algorithms
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا